

GUJARAT TECHNOLOGICAL UNIVERSITY Bachelor of Engineering Subject Code: 3140702 Semester – IV

Subject Name: Operating System

Type of course: Undergraduate

Prerequisite: Linear and non-liner data structures, working experience of any one structured programming language

Teaching and Examination Scheme:

Teaching Scheme Credits			Credits	Examination Marks				Total
L	Т	Р	С	Theory Marks		Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
4	0	2	5	70	30	30	20	150

Syllabus:

Sr.	Content	Total	%
No.		Hrs	weightage
1	Introduction: Computer system overview, Architecture, Goals & Structures of O.S, Basic functions, Interaction of O.S. & hardware architecture, System calls, Batch, multiprogramming. Multitasking, time sharing, parallel, distributed & real-time O.S.	5	10
2	Process and Threads Management: Process Concept, Process states, Process control, Threads, Uni-processor Scheduling: Types of scheduling: Preemptive, Non preemptive, Scheduling algorithms: FCFS, SJF, RR, Priority, Thread Scheduling, Real Time Scheduling. System calls like ps, fork, join, exec family, wait.	8	15
3	Concurrency: Principles of Concurrency, Mutual Exclusion: S/W approaches, H/W Support, Semaphores, Pipes, Message Passing, Signals, Monitors.	4	08
4	Inter Process Communication: Race Conditions, Critical Section, Mutual Exclusion, Hardware Solution, Strict Alternation, Peterson's Solution, The Producer Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing, Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problem etc., Scheduling, Scheduling Algorithms.	8	15
5	Deadlock: Principles of Deadlock, Starvation, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, System calls.	4	08
6	Memory Management: Memory Management requirements, Memory partitioning: Fixed and Variable Partitioning, Memory Allocation: Allocation Strategies (First Fit, Best Fit, and Worst Fit), Swapping, Paging and Fragmentation. Demand Paging, Security Issues. Virtual Memory: Concepts, VM management, Page Replacement Policies (FIFO, LRU, Optimal, Other Strategies), Thrashing.	8	15
7	I/O Management & Disk scheduling: I/O Devices, Organization of I/O functions, Operating System Design issues, I/O Buffering, Disk Scheduling (FCFS, SCAN, C-SCAN, SSTF), RAID, Disk Cache.	6	10

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering

Subject Code: 3140702

8	Security & Protection:	4	07
	Security Environment, Design Principles Of Security, User Authentication,		
	Protection Mechanism : Protection Domain, Access Control List		
9	Unix/Linux Operating System:	4	07
	Development Of Unix/Linux, Role & Function Of Kernel, System Calls, Elementary		
	Linux command & Shell Programming, Directory Structure, System Administration		
	Case study: Linux, Windows Operating System		
10	Virtualization Concepts:	3	05
	Virtual machines; supporting multiple operating systems simultaneously on a single		
	hardware platform; running one operating system on top of another. True or pure		
	virtualization.		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks					
R Level	U Level	A Level	N Level	E Level	C Level
20	35	15	0	0	0

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Course outcomes: Students will be able to

Sr.	CO statement	Marks %
No.		weightage
CO-1	Analyze the structure of OS and basic architectural components involved in	10
	OS design	
CO-2	Compare and contrast various CPU scheduling algorithms.	20
CO-3	Evaluate the requirements for the process synchronization and co-ordination	30
	in contemporary operating system.	
CO-4	Analyze various algorithms for memory management, I/O management and	30
	security aspects of operating system.	
CO-5	Write shell scripts in Unix/Linux O.S and write simple programs using	10
	kernel system calls. Also understand virtualization concept.	

Reference Books:

- 1. Operating Systems: Internals & Design Principles, 9th Edition, William Stallings, Pearson Education India
- 2. Operating System Concepts, 9th edition Peter B. Galvin, Greg Gagne, Abraham Silberschatz, John Wiley & Sons, Inc.
- 3. Modern Operating Systems-By Andrew S. Tanenbaum (PHI)

List of Experiments: Study of Basic commands of Linux/UNIX.

- 1. Study of Advance commands and filters of Linux/UNIX.
- 2. Write a shell script to generate marksheet of a student. Take 3 subjects, calculate and display total marks, percentage and Class obtained by the student.
- 3. Write a shell script to display multiplication table of given number
- 4. Write a shell script to find factorial of given number n.
- 5. Write a shell script which will accept a number b and display first n prime numbers as output.

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering

Subject Code: 3140702

- 6. Write a shell script which will generate first n fibonnacci numbers like: 1, 1, 2, 3, 5, 13, ...
- 7. Write a menu driven shell script which will print the following menu and execute the given task.
 - a. Display calendar of current month
 - b. Display today's date and time
 - c. Display usernames those are currently logged in the system
 - d. Display your name at given x, y position
 - e. Display your terminal number
- 8. Write a shell script to read n numbers as command arguments and sort them in descending order.
- 9. Write a shell script to display all executable files, directories and zero sized files from current directory.
- 10. Write a shell script to check entered string is palindrome or not.
- 11. Shell programming using filters (including grep, egrep, fgrep)
- 12. Study of Unix Shell and Environment Variables.
- 13. Write a shell script to validate the entered date. (eg. Date format is : dd-mm-yyyy).
- 14. Write an awk program using function, which convert each word in a given text into capital.
- 15. Write a program for process creation using C. (Use of gcc compiler).
- 16. Study of Basic commands of Linux/UNIX.
- 17. Study of Advance commands and filters of Linux/UNIX.
- 18. Write a shell script to generate marksheet of a student. Take 3 subjects, calculate and display total marks, percentage and Class obtained by the student.
- 19. Write a shell script to display multiplication table of given number
- 20. Write a shell script to find factorial of given number n.
- 21. Write a shell script which will accept a number b and display first n prime numbers as output.
- 22. Write a shell script which will generate first n fibonnacci numbers like: 1, 1, 2, 3, 5, 13, ...
- 23. Write a menu driven shell script which will print the following menu and execute the given task.
 - a. Display calendar of current month
 - b. Display today's date and time
 - c. Display usernames those are currently logged in the system
 - d. Display your name at given x, y position
 - e. Display your terminal number
- 24. Write a shell script to read n numbers as command arguments and sort them in descending order.
- 25. Write a shell script to display all executable files, directories and zero sized files from current directory.

- 26. Write a shell script to check entered string is palindrome or not.
- 27. Shell programming using filters (including grep, egrep, fgrep)
- 28. Study of Unix Shell and Environment Variables.
- 29. Write a shell script to validate the entered date. (eg. Date format is : dd-mm-yyyy).
- 30. Write an awk program using function, which convert each word in a given text into capital.
- 31. Write a program for process creation using C. (Use of gcc compiler).