

GUJARAT TECHNOLOGICAL UNIVERSITY Bachelor of Engineering Subject Code: 3141601 Semester – IV Subject Name: Operating System and Virtulization

Type of course: Undergraduate

Prerequisite: Linear and non-liner data structures, working experience of any one structured programming language

Teaching and Examination Scheme:

Teaching Scheme Credits			Examination Marks				Total	
L	Т	Р	С	Theory Marks		Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
4	0	2	5	70	30	30	20	150

Syllabus:

Sr. No.	Content	Total Hrs	% Weightage
1	Introduction: Computer system overview, Architecture, Goals & Structures of O.S, Basic functions, Interaction of O.S. & hardware architecture, System calls, Batch, multiprogramming. Multitasking, time sharing, parallel, distributed & real-time O.S.	5	10
2	Process and Threads Management: Process Concept, Process states, Process control, Threads, Uni-processor Scheduling: Types of scheduling: Preemptive, Non preemptive, Scheduling algorithms: FCFS, SJF, RR, Priority, Thread Scheduling, Real Time Scheduling. System calls like ps, fork, join, exec family, wait.	8	15
3	Concurrency: Principles of Concurrency, Mutual Exclusion: S/W approaches, H/W Support, Semaphores, Pipes, Message Passing, Signals, and Monitors.	4	08
4	Inter Process Communication: Race Conditions, Critical Section, Mutual Exclusion, Hardware Solution, Strict Alternation, Peterson's Solution, The Producer Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing, Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problem etc., Scheduling, Scheduling Algorithms.	8	15
5	Deadlock: Principles of Deadlock, Starvation, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, System calls.	4	08
6	 Memory Management: Memory Management requirements, Memory partitioning: Fixed and Variable Partitioning, Memory Allocation: Allocation Strategies (First Fit, Best Fit, and Worst Fit), Swapping, Paging and Fragmentation. Demand Paging, Security Issues. Virtual Memory: Concepts, VM management, Page Replacement Policies (FIFO, LRU, Optimal, Other Strategies), Thrashing. 	8	15

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering

Subject Code: 3141601

7	I/O Management & Disk scheduling: I/O Devices, Organization of I/O functions, Operating System Design issues, I/O Buffering, Disk Scheduling (FCFS, SCAN, C-SCAN, SSTF), RAID, Disk	6	10
	Cache. Unix/Linux Operating System: Development Of Unix/Linux, Role & Function Of Kernel, System Calls, Elementary Linux command & Shell Programming, Directory Structure, System Administration Case study: Linux, Windows Operating System	4	07
9	Virtualization Concepts: Virtual machines; supporting multiple operating systems simultaneously on a single hardware platform; running one operating system on top of another. True or pure virtualization.	3	05
	Approaches to Virtualization: Processor Issue, Memory Management, I/O Management, VMware ESXi, Microsoft Hyper-V and Xen Variants, Java VM, Linux VServer Virtual Machine Architecture, Android Virtual Machine.	5	8

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks					
R Level	U Level	A Level	N Level	E Level	C Level

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Course outcomes: Students will be able to

Sr.	CO statement	Marks %
No.		weightage
CO-1	Learn and understand the concepts, core structure of Operating Systems and	
	basic architectural components involved in operating systems design.	
CO-2	Understand the process management policies and scheduling of processes by	
	CPU.	
CO-3	Evaluate the requirement for process synchronization and coordination	
	handled by operating system.	
CO-4	Describe and analyze the memory management and its allocation policies.	
CO-5	Analyze various device and resource management techniques for	
	timesharing	
CO-6	Conceptualize the components involved in designing a contemporary	
	Operating Systems	

Reference Books:

- 1. Operating Systems: Internals & Design Principles, 8th Edition, William Stallings, Pearson Education India
- 2. Operating System Concepts, 9th edition Peter B. Galvin, Greg Gagne, Abraham Silberschatz, John Wiley & Sons, Inc.
- 3. Modern Operating Systems-By Andrew S. Tanenbaum (PHI)

GUJARAT TECHNOLOGICAL UNIVERSITY Bachelor of Engineering Subject Code: 3141601

- 1. List of Experiments: Study of Basic commands of Linux/UNIX.
- 2. Study of Advance commands and filters of Linux/UNIX.
- 3. Write a shell script to generate marksheet of a student. Take 3 subjects, calculate and display total marks, percentage and Class obtained by the student.
- 4. Write a shell script to display multiplication table of given number
- 5. Write a shell script to find factorial of given number n.
- 6. Write a shell script which will accept a number b and display first n prime numbers as output.
- 7. Write a shell script which will generate first n fibonnacci numbers like: 1, 1, 2, 3, 5, 13, ...
- 8. Write a menu driven shell script which will print the following menu and execute the given task.
 - a. Display calendar of current month
 - b. Display today's date and time
 - c. Display usernames those are currently logged in the system
 - d. Display your name at given x, y position
 - e. Display your terminal number
- 9. Write a shell script to read n numbers as command arguments and sort them in descending order.
- 10. Write a shell script to display all executable files, directories and zero sized files from current directory.
- 11. Write a shell script to check entered string is palindrome or not.
- 12. Shell programming using filters (including grep, egrep, fgrep)
- 13. Study of Unix Shell and Environment Variables.
- 14. Write a shell script to validate the entered date. (eg. Date format is : dd-mm-yyyy).
- 15. Write an awk program using function, which convert each word in a given text into capital.
- 16. Write a program for process creation using C. (Use of gcc compiler).
- 17. Study of Basic commands of Linux/UNIX.
- 18. Study of Advance commands and filters of Linux/UNIX.
- 19. Write a shell script to generate marksheet of a student. Take 3 subjects, calculate and display total marks, percentage and Class obtained by the student.
- 20. Write a shell script to display multiplication table of given number
- 21. Write a shell script to find factorial of given number n.
- 22. Write a shell script which will accept a number b and display first n prime numbers as output.
- 23. Write a shell script which will generate first n fibonnacci numbers like: 1, 1, 2, 3, 5, 13, ...
- 24. Write a menu driven shell script which will print the following menu and execute the given task.
 - a. Display calendar of current month
 - b. Display today's date and time
 - c. Display usernames those are currently logged in the system
 - d. Display your name at given x, y position
 - e. Display your terminal number
- 25. Write a shell script to read n numbers as command arguments and sort them in descending order.
- 26. Write a shell script to display all executable files, directories and zero sized files from current directory.
- 27. Write a shell script to check entered string is palindrome or not.
- 28. Shell programming using filters (including grep, egrep, fgrep)
- 29. Study of Unix Shell and Environment Variables.
- 30. Write a shell script to validate the entered date. (eg. Date format is : dd-mm-yyyy).
- 31. Write an awk program using function, which convert each word in a given text into capital.
- 32. Write a program for process creation using C. (Use of gcc compiler).

List of Open Source Software/learning website:- www.nptel.ac.in