

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3150712 Semester – V Subject Name: Computer Graphics

Type of course: Undergraduate

Prerequisite:----

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				Total
L	Т	Р	С	Theory Marks		Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	2	4	70	30	30	20	150

Syllabus:

Sr.	Content	Total	%
No.		Hrs.	weightage
1	Basic of Computer Graphics:	06	15
	Basic of Computer Graphics, Applications of computer graphics, Display		
	devices, Random and Raster scan systems, Graphics input devices, Graphics software and standards		
2	Graphics Primitives:	08	20
2	Points, lines, circles and ellipses as primitives, scan conversion algorithms for	08	20
	primitives, Fill area primitives including scan-line polygon filling, inside-		
	outside test, boundary and flood-fill, character generation, line attributes, area-		
	fill attributes, character attributers.		
3	2D transformation and viewing:	08	20
	Transformations (translation, rotation, scaling), matrix representation,		
	homogeneous coordinates, composite transformations, reflection and shearing,		
	viewing pipeline and coordinates system, window-to-viewport transformation,		
	clipping including point clipping, line clipping (cohen-sutherland, liang-		
	bersky, NLN), polygon clipping	0.4	1.7
4	3D concepts and object representation:	06	15
	3D display methods, polygon surfaces, tables, equations, meshes, curved lies		
	and surfaces, quadric surfaces, spline representation, cubic spline interpolation methods, Bazier curves and surfaces, B-spline curves and surfaces		
5	3D transformation and viewing:	08	20
5	3D scaling, rotation and translation, composite transformation, viewing	00	20
	pipeline and coordinates, parallel and perspective transformation, view volume		
	and general (parallel and perspective) projection transformations		
6	Advance topics:	06	10
	visible surface detection concepts, back-face detection, depth buffer method,		
	illumination, light sources, illumination methods (ambient, diffuse reflection,		
	specular reflection), Color models: properties of light, XYZ, RGB, YIQ and		
	CMY color models		

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3150712

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks						
R Level	U Level	A Level	N Level	E Level	C Level	
15	20	15	10	5	5	

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course outcomes: Students will be able to

Sr. No.	CO statement	Marks % Weightage
1	To understand the basic computer graphics primitives as well as able to implement	15
	them.	
2	To learn, compare and apply various transformation techniques.	17
3	To design basic animations using latest graphics package software.	25
4	Students will be able to solve open design problems regarding surface and edge detection.	25
5	Students will be able to apply the knowledge, techniques, skills and modern tools tobecome successful professionals in graphics industries.	18

Reference Books:

- 1. Computer Graphics, D.Hearn And P.Baker Pearson Eduction C Version, Latest edition
- 2. Computer Graphics, with OpenGLHearn and Baker, Pearson
- 3. Computer Graphics, Sinha &Udai, TMH
- 4. Computer Graphics, Foley and van Dam Person Education

List of Experiments:

- 1. To study the various graphics commands in C language.
- 2. Develop the DDA Line drawing algorithm using C language
- 3. Develop the Bresenham's Line drawing algorithm using C language
- 4. Develop the Bresenham's Circle drawing algorithm using C language
- 5. Develop the C program for to display different types of lines
- 6. Perform the following 2D Transformation operation Translation, Rotation and Scaling
- 7. Perform the Line Clipping Algorithm
- 8. Perform the Polygon clipping algorithm
- 9. Perform the following tasks using MATLAB commands.
 - Read the grayscale and color image.
 - Display images on the computer monitor
 - Write images in your destination folder.

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3150712

the complement image using MATLAB

10. Generate the complement image using MATLAB.

Design based Problems (DP)/Open Ended Problem:

1. By using the various geometrics transformation techniques, students can develop the various gaming software and also able to perform the animation concept.

Major Equipment:

1. Computer systems with high RAM.

List of Open Source Software/learning website:

- 1. GIMP GNU Image Manipulation Program
- 2. Inkscape Open Source vector graphics editor
- 3. C Compiler
- 4. MATLAB/SciLAB