

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3160714 DATA MINING 6th SEMESTER

Type of course: Under graduate (Elective)

Prerequisite: NA

Rationale: NA

Teaching and Examination Scheme:

Teaching Scheme Credi			Credits	Examination Marks				Total
L	Т	Р	С	Theory Marks		Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	2	4	70	30	30	20	150

Content:

Sr. No.	Content	Total Hrs.	% Weightage
1	Introduction to data mining (DM):	<u>птз.</u> 3	10
1	Motivation for Data Mining - Data Mining-Definition and Functionalities –	3	10
	Classification of DM Systems - DM task primitives - Integration of a Data		
	Mining system with a Database or a Data Warehouse - Issues in DM – KDD		
	Process		
2	Data Pre-processing:	4	15
	Data summarization, data cleaning, data integration and transformation, data		
	reduction, data discretization and concept hierarchy generation, feature		
	extraction , feature transformation, feature selection, introduction to		
	Dimensionality Reduction, CUR decomposition		
3	Concept Description, Mining Frequent Patterns, Associations and	10	20
	Correlations:		
	What is concept description? - Data Generalization and summarization-based		
	characterization - Attribute relevance - class comparisons, Basic concept,		
	efficient and scalable frequent item-set mining methods, mining various kind		
	of association rules, from association mining to correlation analysis,		
4	Advanced Association Rule Techniques, Measuring the Quality of Rules. Classification and Prediction:	10	20
4	Classification vs. prediction, Issues regarding classification and prediction,	10	20
	Statistical-Based Algorithms, Distance-Based Algorithms, Decision Tree-		
	Based Algorithms, Neural Network-Based Algorithms, Rule-Based		
	Algorithms, Combining Techniques, accuracy and error measures, evaluation		
	of the accuracy of a classifier or predictor. Neural Network Prediction		
	methods: Linear and nonlinear regression, Logistic Regression Introduction of		
	tools such as DB Miner / WEKA / DTREG DM Tools		
5	Cluster Analysis:	10	20
	Clustering: Problem Definition, Clustering Overview, Evaluation of		
	Clustering Algorithms, Partitioning Clustering -K-Means Algorithm, K-		
	Means Additional issues, PAM Algorithm; Hierarchical Clustering -		
	Agglomerative Methods and divisive methods, Basic Agglomerative		

GUJARAT TECHNOLOGICAL UNIVERSITY Bachelor of Engineering Subject Code: 3160714

Subject Code. 5100/14					
	Hierarchical Clustering, Strengths and Weakness; Outlier Detection,				
	Clustering high dimensional data, clustering Graph and Network data.				
6	Web mining and other data mining:	5	15		
	Web Mining: Introduction to Web Mining, Web content mining, Web usage				
	mining, Web Structure mining, Web log structure and issues regarding web				
	logs, Spatial Data Mining, Temporal Mining, And Multimedia Mining.				
	Applications of Distributed and parallel Data Mining.				

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks						
R Level	U Level	A Level	N Level	E Level	C Level	
10	20	15	15	5	5	

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. J. Han, M. Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann
- 2. M. Kantardzic, "Data mining: Concepts, models, methods and algorithms, John Wiley & Sons Inc.
- 3. M. Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education.
- 4. Ning Tan, Vipin Kumar, Michael Steinbanch Pang, "Introduction to Data Mining", Pearson Education

Course Outcome: After learning the course the students will be able

Sr. No.	CO statement	Marks % weightage
CO-1	Perform the preprocessing of data and apply mining techniques on it.	20
CO-2	Identify the association rules, classification, and clusters in large data sets.	30
CO-3	Solve real world problems in business and scientific information using data mining.	20
CO-4	Use data analysis tools for scientific applications.	15
CO-5	Implement various supervised machine learning algorithms.	15

List of Experiments:

Laboratory work will be based on the above syllabus with minimum 10 experiments to be incorporated.