

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3171114 Semester – VII

Subject Name: Introduction to Machine Learning

Type of course: Elective

Prerequisite: Basics of Probability and Statistical Theory, and Optimization Concepts

Rationale: The objective of the course is to introduce the students with concepts of machine learning, machine learning algorithms and its various applications.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				Total
L	T	P	С	Theory Marks		Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	2	4	70	30	30	20	150

Content:

Sr. No.	Content			
1	Introduction to Machine Learning:			
	Introduction, Different Types of Learning, Hypothesis Space, Inductive Bias, Evaluation and Cross Validation			
2	Basic Machine Learning Algorithms: Linear Regression, Decision Trees, Learning Decision Trees, K-nearest Neighbour, Collaborative Filtering, Overfitting			
3	Dimensionality Reduction: Feature Selection, Feature Extraction	04		
4	Bayesian Concept of Learning: Bayesian Learning, Naïve Bayes, Bayesian Network, Exercise on Naïve Bayes	04		
5	Logistic Regression and Support Vector Machine: Logistic Regression, Introduction to Support Vector Machine, The Dual Formation, Maximum Margin with Noise, Nonlinear SVM and Kernel Function, SVM: Solution to the Dual Problem	06		
6	Basics of Neural Network: Introduction to neural network, Multilayer Neural Network, Neural Network and Backpropagation Algorithm, Deep Neural Network	08		
7	Computation and Ensemble Learning: Introduction to Computation Learning, Sample Complexity: Finite Hypothesis Space, VC Dimension, Introduction to Ensembles, Bagging and Boosting			
8	Basic Concepts of Clustering: Introduction to Clustering, K-means Clustering, Agglomerative Hierarchical Clustering	06		

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3171114

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
10	20	40	10	10	10		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Reference Books:

- 1. Machine Learning, Saikat Dull, S. Chjandramouli, Das, Pearson
- 2. Machine Learning with Python for Everyone, Mark Fenner, Pearson
- 3. Machine Learning, Anuradha Srinivasaraghavan, Vincy Joseph, Wiley
- 4. Machine Learning with Python, U Dinesh Kumar Manaranjan Pradhan, Wiley
- 5. Python Machine Learning, Sebastian Raschka, Vahid Mirjalili, Packt Publishing

Course Outcomes:

Sr. No.	CO statement	Marks % weightage
CO-1	Understand basic concepts of machine learning as well as challenges involved.	15
CO-2	Learn and implement various basic machine learning algorithms.	40
CO-3	Study dimensionality reduction concept and its role in machine learning techniques.	10
CO-4	Realize concepts of advanced machine learning algorithms.	20
CO-5	Comprehend basic concepts of Neural network and its use in machine learning.	15

List of Experiments (Programs can be written in Python or some other language):

1. Generate a synthetic data set using following function, and split it into training, validation, and testing sample points. Use linear regression technique to develop a model, and evaluate on test samples. X is Gaussian noise.

$$y = \frac{x}{2} + \sin(x) + \aleph$$

- 2. Write a program for Logistic Regression to classify IRIS data for two features (sepal length and width).
- 3. For the synthetic dataset used in experiment 1, write a program for the concept of decision tree to develop a piecewise linear model and test it as well.
- 4. Write a program for decision tree to classify IRIS dataset. Consider all four features.

Page 2 of 3

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3171114

- 5. Write a program for kNN algorithm for classification of IRIS dataset.
- 6. Write a program using PCA algorithm for dimensionality reduction in case of Olivetti dataset, and follow it with KNN algorithm for face recognition.
- 7. Write a program using Bayes algorithm for email classification (spam or non-spam) for the open-sourced data set from the UC Irvine Machine Learning Repository.
- 8. Write a program using SVM algorithm for Boston house price prediction dataset to predict price of houses from certain features.
- 9. Write a program using SVM on IRIS dataset and carry out classification.
- 10. Write a program for artificial neural network for recognition of handwritten digits available in MNIST database. Use Google Tensor Flow library for the said task.

List of e-Learning Resources:

- 1. https://www.geeksforgeeks.org/machine-learning/
- 2. https://www.tutorialspoint.com/machine_learning_with_python/index.htm
- 3. https://nptel.ac.in/
- 4. https://www.coursera.org/