

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3171910 Semester –VII

Subject Name: Power Plant Engineering

Type of course: Professional Core

Prerequisite: Thermodynamics& Heat Transfer

Rationale: Providing an overview of Power Plants and detailing the role of Mechanical Engineers in their operation and maintenance and to address the underlying concepts, methods and application of different Thermal Power Plants.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks				Total
L	T	P	C	Theory Marks Practical Marks		Marks	Marks	
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	0	3	70	30	0	0	100

Content:

Sr.	Content	Total
No.		Hrs
1	Coal Based Thermal Power Plant: Layout of modern coal power plant, site selection criteria,	14
	Rankine cycle and its improvisations, Supercritical Pressure Boilers, FBC Boilers, Steam	
	Nozzles, Steam Turbines, Steam Condensers, Cooling Towers, Steam & Heat rate, Combined	
	Cycle Power Plant : Binary Cycles and Cogeneration systems. Subsystems of thermal power	
	plants – Draught system, Fuel and ash handling, Feed water treatment,	
2	Gas Turbine Power Plant: Classification, Open and closed cycle, Gas turbine fuels, Actual	10
	Brayton cycle, Optimum pressure ratio for maximum thermal efficiency, Work ratio, Air rate,	
	Effect of operating variables on the thermal efficiency and work, Cooling of gas turbine blade,	
	Combined steam and gas turbine plant.	
3	Nuclear Power Plant: Basics of Nuclear Engineering, Layout and subsystems of Nuclear	08
	Power Plants, Working of Nuclear Reactors: Boiling Water Reactor (BWR), Pressurized Water	
	Reactor (PWR), CANada Deuterium- Uranium reactor (CANDU), Breeder, Gas Cooled and	
	Liquid Metal Cooled Reactors, Brief about the Nuclear program in India, Safety measures for	
	Nuclear Power plants	
4	Power from Renewable Energy: Hydro Electric Power Plants – Classification, Typical Layout	08
	and associated components including Turbines. Principle, Construction and working of Wind,	
	Tidal, Solar Photovoltaic (SPV), Solar Thermal, GeoThermal and Fuel Cell power systems	
5	Energy, Economic and Environmental issues of Power plants: Power tariff types, Load	05
	distribution parameters, load curve, Comparison of site selection criteria, relative merits &	
	demerits, Capital & Operating Cost of different power plants. Pollution control technologies	
	including Waste Disposal Options for Coal and Nuclear Power Plants	

Suggested Specification table with Marks (Theory):

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3171910

Distribution of Theory % Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
25	25	30	20	0	0		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Power Plant Engineering, P.K. Nag, McGraw-Hill Education
- 2. Power Plant Technology, M.M. El-Wakil, McGraw-Hill Education
- 3. Thermal Engineering, R.K.Rajput, Laxmi Publication
- 4. Gas Turbines by V.Ganeshan, McGraw Hill Education
- 5. Steam Turbine Theory and Practice, William J. Kearton, CBS Publication

Course Outcomes:

Sr.	CO statement	Marks %
No.		weightage
CO-1	Explain the layout, construction and working of the components of thermal, Diesel,	55
	Gas and Combined cycle power plants.	
CO-2	Explain the layout, construction and working of the components of Nuclear power	17
	plants.	
CO-3	Explain the layout, construction and working of the components of Renewable	18
	Energy power plants.	
CO-4	Explain the applications of power plants while extending their knowledge to power	10
	plant economics and environmental hazards and estimate the costs of electrical	
	energy production.	

List of Open Source Software/learning website:

- 1. http://nptel.ac.in/
- 2. http://npti.in/default.aspx

Industrial Visit: It is strongly suggested and recommended to arrange a visit to Thermal Power Plant/Hydro Power Plant / Nuclear Power Plant / Solar Power Plant.