GUJARAT TECHNOLOGICAL UNIVERSITY (G.T.U.)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-III

Course Title: Engineering Thermodynamics (Course Code: 4331902)

Diploma programs in which this course is offered	Semester in which offered		
Mechanical Engineering, Mechatronics Engineering, Marine	Third		
Engineering	Inira		

1. RATIONALE:

Thermodynamics is a branch of science that deals with energy transformations and are primarily concerned with the two forms of energy heat and work. The energy transformations are governed by the various laws of thermodynamics known as zero, first, second and third laws. These laws were deducted from experimental observations and logical reasoning. Extensive applications of thermodynamics can be found in fields ranging from refrigeration and air-conditioning to aerospace. Its principles are used to design energy converting devices, automobile engines, steam and gas turbines, power plants, compressors, HVAC, alternators, propulsion systems of aircraft and rockets, etc. Thus, every student of Diploma Mechanical Engineering should have a fundamental knowledge of thiscourse. It is a pre-requisite course for many courses of Thermal Engineering in higher semesters.

2. COMPETENCY:

The course should be taught in such a way that it can develop the necessary skills to bridge the gap between theoretical knowledge and its practical application. The students achieve the following competencies after completion of this course:

o Apply fundamental concepts, laws and principles of thermodynamics on various thermal Devices/systems.

3. COURSE OUTCOMES (COs)

1. Identify thermodynamic properties and systems by interpreting the basic concepts of thermodynamics.

- 2. Apply various thermodynamic laws and gas laws to thermal systems.
- 3. Calculate various parameters of different thermodynamic processes and cycles using P-V and T-s diagrams.

4. TEACHING AND EXAMINATION SCHEME

Teach	ing Sc	heme	Total Credits	Examination Scheme				
(Ir	n Hour	s)	(L+T+P/2)	Theory Marks		Theory Marks Practical Marks		Total
L	Т	Р	С	СА	ESE	СА	ESE	Marks
3	0	0	3	30*	70	0	0	100

(*) out of 30 marks under the component of theory CA, 10 marks are allotted for the assessment of the micro-project to facilitate the integration of COs. The remaining 20 marks would be the average of marks of the 2 mid-semester exams to be taken during the semester for assessing the attainment of the cognitive domain. UOs are required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; **P** -Practical; **C** – Credit, **CA** - Continuous Assessment; **E.S.E.** -End Semester Examination.

5. UNDERPINNING THEORY

The primary underpinning theory is below based on the higher level UOs of the *Revised Bloom's taxonomy* formulated for developing the COs and competency. If required, more such UOs could be included by the course teacher to focus on attaining COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics	
	(4 to 6 UOs at different		
	levels)		
Unit–I	1.a Illustrate various terms	1.1 Introduction and applications of	
Basic Concepts of	related to	Engineering thermodynamics.	
Thermodynamics	thermodynamics.	1.2 Basic thermodynamic Concepts.	
	1.b Identify	 State, System, Boundary and 	
	thermodynamic	Surroundings.	
	properties with	 Types of Systems and boundaries 	
	appropriate usages.	with examples.	
	1.c Describe a zeroth law	- Thermodynamic properties, their	
	of thermodynamics.	units and classifications.	
		1.3 Energy, Heat, Work, Power and its	
		simple numericals.	
		1.4 Thermodynamic equilibrium.	
		1.5 Thermodynamic Process and Cycle	
		1.6 Zeroth law of thermodynamics and its	
		application.	

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different	
	levels)	
Unit –II	2.a Describe the first law	2.1 Law of conservation of energy.
First Law of	of thermodynamics.	2.2 Heat and work relation with Joule's
Thermodynamics	2.b Apply the first law of	Experiment.
	thermodynamics to	2.3 Statement of the first law of
	real-life situations.	thermodynamics.
	2,C Solve various	2.4 Application of the firstiaw of
	first law of	(locad system (Non flowProcessos)
	thermodynamics	- Closed system (Non-nowProcesses).
	thermodynamics.	2.5 Definition of the flow process control
		volume and flow work
		2.6 Steady and unsteady flow processes.
		2.7 Steady Flow Energy Equations
		(SFEE) and its applications in Nozzle,
		Diffuser, Boiler, Turbine, Compressor,
		Condenser, and throttling devices.
		2.8Simple numerical examples based on the
		above.
		2.9 Identify the applications of First law of
		thermodynamics for green environment.
Unit–III	3.a Describe the second	3.1 Limitations of the first law of
Second Law of	law of	thermodynamics.
Inermodynamics	thermodynamics.	3.2 Concept of neat source, heat sink, heat
	of thormodynamics to	simple numerical on thermal officiency
	real-life situations	and COP (Coefficient of Performance)
	3 c Solve various	respectively
	numerical related	3.3 Statement of the second law of
	thermal efficiency	thermodynamics:
	, &С.О.Р	- Kelvin Planck Statement
	3.d Interpret the entropy,	- Clausius Statement
	its equations with the	3.4 Applications of the second law of
	unit.	thermodynamics. <mark>Also identify its</mark>
		applications for green environment.
		3.5 Concept of reversibility and
		irreversibility. List of irreversibility only.
		3.6 Definition of Entropy and its T-ds
		equation. (Without Derivations)
		3.7 Statement of the third law of
Linit IV	1 a Doccribo variovo idad	thermouynamics.
Ideal Gases and		4.1 CONCEPT OF Ideal gas.
Thermodynamic	4 h Derive the relationship	law for ideal gases
Processes	of specific heats.	4.3 Characteristic gas equation and

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different	
	levels)	
	 4.c Identify various thermodynamic processes. 4.d Calculate the amount of heat transfer, work transfer & internal energy associated with the process. 4.e Plot various thermodynamic processes on P-V and T-S diagrams. 4.f Solve various numerical. 	 Universal gas constant, Specific heats of gas and their relationship. 4.4 Thermodynamic Processes, its representation on P-V (Pressure-Volume) and T-S (Temperature-Entropy) diagram: Constant Volume Process Constant Pressure Process Constant Temperature Process Constant Temperature Process Adiabatic Process Polytropic Process Throttling Process 4.5 Equations of P-V-T relationship, work transfer, heat transfer and internal energy of the above processes. (Without derivations) 4.6 Simple numerical based on the above
Unit–V	5.a Identify	5.1 Classifications of thermodynamic cycle.
Thermodynamic	thermodynamic	5.2 Carnot cycle and its representation on P-
Cycles	processes in a cycle.	V and T-s diagram.
Cycles	 5.b Plot various cycles on P-V and T-s diagram. 5.c Solve various numerical related to power-producing cycles. 	 5.3 Derivation of thermal efficiency of Carnot cycle and simple numerical based on it. 5.4 Concept of air standard efficiency. 5.5 Otto, Diesel, Dual and Brayton cycle (Without derivation) 5.6 Representation on P-V & T-s diagram, Equation of air standard efficiency (Without derivations) and simple examples. 5.7 Representation of Reversed Carnot cycle and Reversed Brayton cycle on P-V and T-s diagram respectively.

6. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

l lait	Unit Title	Teaching Hours	Distribution of Theory Marks				
No.			R	U	Α	Total	
			Level	Level	Level	Marks	
-	Basic Concepts of Thermodynamics	8	05	04	04	13	
II	First Law of Thermodynamics	09	04	05	06	15	
III	Second Law of Thermodynamics	05	02	03	03	8	

IV	Ideal Gases and Thermodynamic Processes	10	04	06	07	17
V	Thermodynamic Cycles	10	04	06	07	17
	Total	42	19	24	27	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

Note: This specification table gives general guidelines to assist students in their learning, and to the teachers, for question paper design and teaching methodology to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U, and A) in the question paper may slightly vary from the above table.

7. SUGGESTED STUDENT ACTIVITIES

Sr.No.	Activity.						
1.	Identify and list real situations working on a:Zerothlaw of thermodynamics. b:Firstlawofthermodynamics. c:Secondlawofthermodynamics.						
2.	Prepare charts of diesel, dual and gasoline cycles. Tabulate the main points of differences between them.						
3.	List out the thermodynamic laws/concepts used in the Solar system. Also, Prepare technical specifications of solar rooftop at your home or nearby areas.						
4.	Write the specifications of the domesticrefrigeratoravailableatyourhomeandI.C.Engineofanytwo- wheelers.Also,drawandexplainthe cycle on which domestic Refrigerator and I.C. Engine works.						
5.	Presentations on "Smart Thermostat" of home appliances.						
6.	Collect/ download product catalogs with the specification of various types of air compressors/ I.C.Engines /Refrigerators used in daily life.						
7.	Take any thermal Device/system available in the Institute and identify it based on 1)type of system, 2) type of boundary.						
8.	Prepare specification of some thermal devices/systems available in the Institute/surrounding.						
9.	Give seminars on various topics learned in the course.						
10.	Prepare chart on: (1) Types of system, (2) Temperature scale, (3) Types of process, (4) Types of thermodynamic cycles, and (5) Refrigeration cycle, etc.						
	Interpret the relationship between different thermodynamic properties.						

8. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (IF ANY)

These are sample strategies that the course teacher can use to accelerate the attainment of the various outcomes in this course.

Unit	Unit Title	Strategies		
I	Basic Concepts of Thermodynamics			
		0	Real-life examples. Demonstration	
П	Ideal Gases and Thermodynamic		ofrealsystems. Movies/Animations.	
	Processes	0	Numericals, Massive Open Online Courses	
111	First Law of Thermodynamics		(MOOCs).	
IV	Second Law of Thermodynamics			
V	Thermodynamic Cycles			

9. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to them during the semester. The teacher can assign any activity suggested in section 7 of **"SUGGESTED STUDENT ACTIVITIES"** according to their convenience. While designing the micro-project, it should be kept in mind that it encompasses most of the COs.It should be the application of the theoretical knowledge into some practical aspect.

10. SUGGESTED LEARNING RESOURCES

Sr. No.	TitleofBooks	Author	Publication& ISBN
1.	Engineering Thermodynamics	Yunus A. Cengel	Tata McGraw Hill 975-1-25-906256-8
2.	Thermodynamics	R.Yadav	CPH ISBN-13: 9788185444031
3.	Thermodynamics for Engineers	M.L.Mathur	Dhanpatrai & sons 81-200-0029-3
4.	Heat Engines	C.S.Shah& N.C.Pandya	Charotar Publi.House 81-85594-49-X
5.	Elements of Heat Engines Vol.I&II	R.C.Patel	Acharya Book Depot
6.	Thermodynamics	SAAD	Prentice-Hall
7.	EngineeringThermodynamics- 2 nd Edition	P.K. Nag	Mc-GrawHillEducation 978-0-07-026062-7
8.	Applied Thermodynamics	R.C.Patel	AcharyaBookDepot
9.	Thermodynamics	Gupta	Pearson 9788131717950

10.	Thermodynamics	J.P. Holman	Tata Mc Graw-Hill
11.	Thermodynamics – Theory & Application	Robert Balmer	Jaico publication house
12.	Fundamentals of Thermodynamics	Sonntag, Borgnakke & Van wylen	John Wiley & sons (ASIA) PVT. LTD

11. SOFTWARE/LEARNING WEBSITES

Sr.	Software/Website address	Topic covered
No.		
1.	CALPHAD software	Thermodynamic modeling
2.	https://lawofthermodynamicsinfo.com/what-is-	Basic of thermodynamics
	thermodynamic-system/	
3.	https://thermo.pressbooks.com/chapter/chapter-4/	Problems based on first law of
		thermodynamics
4.	https://study.com/academy/lesson/First-law-of-	First law of thermodynamics
	thermodynamics-law-of-conservation-of-	
	energy.htm	
5.	https://vimeo.com/94762428	First law of thermodynamics
6.	https://www.youtube.com/watch?v=OmhXb-miAhw	Thermodynamic cycles
7.	https://nptel.ac.in/courses/112/105/112105123/	All units
8.	http://www.thermofluids.net/	All units
9.	http://www.grc.nasa.gov/WWW/k-	Basic concepts
	12/airplane/thermo.html	
10.	http://www.youtube.com/watch?v=Xb05CaG7TsQ	First law of thermodynamics

11.	http://www.youtube.com/watch?v=aAfBSJObd6Y	Са		
		rnot cycle		
12.	http://www.youtube.com/watch?v=DHUwFuHuCdw	Secondlaw of thermodynamics		
		and heat engines		
13.	http://www.youtube.com/watch?v=GKqG6n6nAmg	Zeroth law of thermodynamics		
14.	https://www.youtube.com/watch?v=ty4F30dRdwk	Understanding entropy		
15.	https://www.youtube.com/watch?v=WTtxlaeC9PY	Understanding secondlaw of		
		thermodynamics		
16.	https://www.youtube.com/watch?v=Jsnv8L7HdEk	Thermodynamic processes		

12. PO-COMPETENCY-CO MAPPING

Semester II	Engineering Thermodynamics (Course Code: 4321901)						
	POs						
Competency	PO1	PO2	PO3(Desig	PO4(Engin	PO5	PO6	P07
& Course Outcomes	(Basic &	(Probl	n/ dovolonmo	eering	(Engineering	(Project	(Life-long
	e specific	Analy	nt of	Experimen	society.	ment)	learning)
	knowled	sis)	solutions)	tation	sustainabilit		
	ge)			Testing)	<mark>y &</mark>		
					environment		
Competency	Apply fundamental concepts, laws and principles of Thermodynamics on						
	various thermal devices/systems.						
CO.1 Identify							
thermodynamic							
properties and							
systems by	3	-	-	-	-	-	2
interpreting the							
basic concepts of							
thermodynamics.							
CO.2 Apply various	2	2	_	_	1	_	2
thermodynamic	5	2	2	_	±		2

laws and gas laws to thermal systems.							
CO.3 Calculate various parameters of different thermodynamic processes and cycles using P-V and T-s diagrams	3	2	1	_	-	_	_

Legend: '**3'** for high, '**2**' for medium, '**1'** for low and '-' for no correlation ofeach CO with PO.

13. COURSE CURRICULUM DEVELOPMENT COMMITTEE

o GTU Resource Persons:

Sr. No.	Name and Designation	Institute	Contact No.	Email
1.	Dr. Pinkesh	Gov. Polytechnic,	9825472703	pinkeshrshah@gtu.edu.in
	R.Shah	Ahmedabad		
2.	Dr. V.K.Patel	R.C.Technical Institute,	9898712580	vkpatel 1976@rediffmail.com
		Ahmedabad		
3.	Ms.Swati Dayal	R.C.Technical Institute,	9998670720	swatidayal@rediffmail.com
		Ahmedabad		
4.	Dr.Rakesh	Govt.Polytechnic,	9924402808	rakesh.bumataria@gmail.com
	Bumataria	Porbandar		

BOS Resource Persons

Sr. No.	Name and Designation	Institute	Contact No.	Email
1.	Dr.S.H.Sundarani	Government	9227200147	gpasiraj@gmail.com
	BOS Chairman	Polytechnic		
	HOD Mechanica lEngg.	Ahmedabad		
2.	Dr. Rakesh D. Patel	B & B Institute of	9825523982	rakeshgtu@gmail.com
	BOS Member	Technology		
	HOD Mechanical Engg.	VV Nagar		
3.	Dr.Atul.S. Shah	B.V.Patel	7567421337	Asshah 97@yahoo.in
	BOS Member	Instituteof		
	Principal	Technology		
		Bardoli		