GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2023 (COGC-2023)

Semester-V

Course Title: Advance Manufacturing System

(Course Code: 4351906)

Diploma program in which this course is offered	Semester in which offered
Mechanical & Mechatronics Engineering	5th Semester

1. RATIONALE

Manufacturing processes converts raw material to finished product for customer usage. Now a day's customer is the king in the market and needs and desires of customer has increased the varieties and features in products. This has increased the complexities at almost all the stages of manufacturing. In modern manufacturing system it is very important to listen voice of customer and deploy his needs in entire manufacturing system. In modern era of the liberalized economy, we are facing world class competition in our own country. Global industries in the form of advanced manufacturing systems, is compelling Indian industries to reorganize their manufacturing strategies for competing on the dimensions of cost, quality, flexibility and deliverability. Hence it is important for us to understand the various modern-manufacturing systems available today.

Recent advance manufacturing system /techniques / electronics devices provide precision machine control compare to conventional machines. With higher accuracy quality and productivity. Objective of leaning this subject is to make aware the students about the advance manufacturing practices/systems being implemented at leading industries across the globe, which ultimately leads to more customer satisfaction in terms of low cost and high quality.

2. COMPETENCY

The course content should be taught and implemented to develop different skills so that students can acquire the following competency.

• Identify and use the proper manufacturing systems to manufacture products with available resource at internationally competitive price with innovation, creativity and better quality.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge, and the relevant soft skills associated with the identified competency are to be developed in the student for the achievement of the following Cos.

CO-1	Identify role of computers and information technology in manufacturing
	systems with concept of technological life cycle and product life cycles.
<u> </u>	Develop an FMS (Flexible Manufacturing System) layout for given simple part
CO-2	family, using group technology concepts to and make proper grouping as per

	their attributes.
CO-3	Recognize use of Automation and control technology in industries.
CO-4	Discuss use of robotics Industrial automation, programmable logic controllers in modern manufacturing system and Industry 4.0
CO-5	Describe application of recent trends in modern manufacturing system.

4. TEACHING AND EXAMINATION SCHEME

Teaching Schome		Total		Exam	ination Sc	heme		
Tea	icning Sche	eme	Credits	Theory	^v Marks	Practica	l Marks	Total
L	Т	Р	С	CA	ESE	CA	ESE	Total
3	0	2	4	30*	70	25	25	150

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T– Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, CA - Continuous Assessment; ESE -End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

Following practical outcomes (PrOs) are the sub-components of the Course Outcomes (COs). Some **POs** marked '*'are compulsory, as they are crucial for that particular CO at the 'Precision level' of Dave's Taxonomy related to the 'Psychomotor Domain.'

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
01	Presentation on "How it's made" with type of manufacturing process and systemFaculty will assign any one part from Annexure-I. (Each student will have different part in a batch). Student will download movies/content and will present with the concept "How it's made.	1	02
02	Development of GT codes: Faculty will ask each student to bring at least one component having mechanical features and having more than 5-6 machining operations. Each student will also prepare the drawing and process plan (As per attached Annexure-II). Then the data will be interchanged by batch students. Collection of parts and making drawing and	2	04

	process plans will be as home assignment. Faculty will		
	assign this task in very first period of practice.		
	Students would:		
	a. Prepare drawing of part brought by the student.		
	b. Prepare process plan as per Annexure-II for the part		
	brought by student.		
	c. Interchange part drawings and process plans. (No		
	photo copies are allowed. Each student in a batch		
	will have total drawings and process plans equal to		
	number of students in a batch who have brought		
	parts. This may be also given as home assignment).		
	d. Prepare feature matrix.		
	Select GT coding system and assign GT code to each.		
	Preparation of FMS layout: Students would:		
	a. Develop part family (May be 3-6 parts) from all		
	parts. (Taken in Ex. No. 2 above.) This is to be		
	carried out logically from feature matrix.		
	b. Assume quantities of each part of part family		
	developed in an above.		
03	c. Assume additional data for following:	З	04
00	i. Number of shifts and working hours in each shift.	5	01
	ii. Average number of working days in a month.		
	iii. Utilization factor of FMS unit.		
	d. Prepare process time matrix.		
	e. Determine type and number of work stations.		
	Perform necessary calculations and prepare		
	conceptual FMS layout.		
04	Prepare report/Case study on Industrial Automation and	4	02
	process control system.		
	Demonstration:		
	Students would:		
	a. Demonstrate working of following:		
	i. Robot-anyone.		
	II. Sensors-each one from force & torque type, velocity		
05	and acceleration type, proximity type, position type	5&7	04
	and vision type.		
	III. Programmable logic controller (PLC).		
	 D. Sketch following. Configuration sketch of rebet demonstrated 		
	 Configuration sketch of robot demonstrated. Working sketch of concern demonstrated. 		
	ii. Diock diagrams of DLC		
	Industry 1 0		
06	Industry 4.0 Dropara report /Case study on Industry 4.0	c	02
00	riepare report / case study on mudstry 4.0	σ	02
07	Demonstration and simulation of computer integrated	0	02
07	manufacturing system on various free access software.	ŏ	02
08	Prepare report /Case study on lean manufacturing and	8	02

	green manufacturing.			
00	Prepare report/Case study on Computer aided process	Q	02	
09	planning and concurrent engineering.	0		
	Industrial visit and report :			
	Students would:		02	
10	Visit any one advanced manufacturing system/CAD-CAM/	ALL		
	Robotics/Additive manufacturing based industry/Centre of	dustry/Centre of		
	excellence/Exhibition and prepare brief report on it.			
	Seminar presentation:			
11	Students would:	A I I	02	
11	Prepare and present seminar topic individually.	ALL		
	(Seminar topic has to be given by faculty).			
	Total (Hours)	-	28	

Note:

I. More Practical Exercises can be designed and offered by the respective course teacher to develop the industry-relevant skills/outcomes to match the COs. The above table is only a representative list.

II. Care must be taken in assigning and assessing the study report as it is a Second-year study report. The study report, data collection, and analysis report must be assigned to a group. A teacher has to discuss the type of data (which and why) before the group starts their market survey.

The following are some sample 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above-listed Practical Exercises of this course, which are embedded in the COs and ultimately the competency.

Sr. No.	Sample Performance Indicators for the PrOs Weightage in %		
Demonstration type PrOs (PrOs Number: 5 & 6)			
1	Knowledge	30	
2	Quality of Report	30	
3	Participation	25	
4	Punctuality	15	
	Total	100	

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %
Experimentation/performance type PrOs (PrOs Number: 2,3,4,7 & 8)		
1	Knowledge	20
2	Procedure follows	30
3	Observation Skill	20
4	Conclusion/ Summary	10
5	Quality of Report	10
6	Punctuality	10
	Total	100

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %		
Presentation type PrOs (PrOs Number: 1,10)				
1	Presentation & Organization	25		

2	Content (MATTER+PPT)	20
3	Subject Knowledge	20
4	Communication Skill (VERBAL+NONVERBAL)	25
5	Time Taken	10
	Total	100

Sample rubrics Performance Indicators for the PrOs

Demonstration type PrOs (PrOs Number: 5 & 6)						
Criteria	%	10	9-8	7-6	5	
Knowledge	30%	Students give the correct answers 90% or more	Student give the correct answers between 70- 89%	Student give the correct answers between 50- 69%	Student give the correct answers less than 50%	
Quality of Report	30%	Neat Handwriting, figure, and table. Complete labeling of figure and table	Only formatting is not proper (Location of figures/tables, use of pencil and scale)	A few required elements (labeling/ notations) are missing	Several require elements (content in paragraph, labels, figures, tables) are missing	
Participation	25%	Excellent focused attention in the exercise	Moderately focused attention on exercise	Focused limited attention in the exercise	Participation is minimum	
Punctuality	15%	Timely Submission	Submission late by one laboratory	Submission late by two laboratories	Submission late by more than two laboratories	

Experimentation/performance type PrOs (PrOs Number: 2,3,4,7 & 8)						
Criteria	%	10	9-8	7-6	5	
Knowledge	20%	Student give the correct answers 90% or more	Student give the correct answers between 70- 89%	Student give the correct answers between 50- 69%	Student give the correct answers less than 50%	
Procedure follows	30%	Student follow all the	Student follow all the	Student follow all the	Student follow all the	

		procedure with precaution in a logical order	procedure with some precaution in a logical order	procedure without precaution in a logical order	procedure without precaution in an illogical order
Observation Skill	20%	Excellent focused attention in the exercise	Moderately focused attention on exercise	Focused limited attention in the exercise	Participation is minimum
Conclusion/ Summary	10%	Student concept is mostly clear	Student concept is partly clear	Student concept is somewhat clear	Student concept is not clear
Quality of Report	10%	Neat Handwriting, figure, and table. Complete labeling of figure and table	Only formatting is not proper (Location of figures/tables, use of pencil and scale)	A few required elements (labelling/ notations) are missing	Several require elements (content in paragraph, labels, figures, tables) are missing
Punctuality	10%	Timely Submission	Submission late by one laboratory	Submission late by two laboratories	Submission late by more than two laboratories

Presentation type PrOs (PrOs Number: 1,10)						
Criteria	%	10	9-8	7-6	5	
Presentation & Organization	25%	Student shows enthusiasm and presents information in logical, interesting sequence which engages the audience	Student presents information in logical sequence which audience can follow	Audience has difficulty following presentation because student jumps around	Delivery not smooth and audience attention lost because there is no sequence of information	
Content (MATTER + PPT)	20%	Accurate and in depth information, sufficient amount of information, proper citing of resources	Accurate information, sufficient information, some resources not cited	Some information is inaccurate, sufficient information, some resources are not cited	Information is inaccurate, most sources are not cited	
Subject	20%	Student	Student is at	Student is	Student does	

Knowledge		demonstrates full	ease with information	uncomfortabl e	not have grasp of
		knowledge (more than required) and answers all questions with explanations and elaboration	and gives expected answers to all questions, but fails to elaborate	with information and is able to answer only rudimentary questions	information; student cannot answer questions about subject
Communicati on Skill (VERBAL + NONVERBAL)	25%	Student mumbles, incorrectly pronounces terms, and speaks too quietly for students in the back of class to hear	Student's voice is low. Student incorrectly pronounces terms. Audience members have difficulty hearing presentation	Student's voice is clear. Student pronounces most words correctly. Most audience members can hear presentation	Student uses a clear voice and correct, precise pronunciation of terms so that all audience members can hear presentation
Time Taken	10%	The presentation was of the proper duration	Presentation speech is 10% short or over the allotted time	Presentation speech is 20% short or over the allotted time	Presentation speech is 30% or more short or over the allotted time

6. MAJOR EQUIPMENT/INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrO is a guide to procure them by the administrators to a user in uniformity of practice in all institutions across the state.

Sr. No.	Equipment Name	PrO. No.
1	Kits on robotics.	5
2	Set of sensor / transducer demonstration and operation trainer kit. (This should include sensors/transducers as per syllabus.)	5
3	Analog to digital and digital to analog trainer modules.	5
4	Digital logic trainer board.	5
5	PLC trainer or Demo software	5

7. AFFECTIVE DOMAIN OUTCOMES

The following **sample** Affective Domain Outcomes (ADOs) are embedded in many of the COs mentioned above and PrOs. More could be added to fulfill the development of this course competency.

- a. Work as a leader/team member.
- b. Follow safety practices.
- c. Follow ethical practices
- d. Maintain tools and equipment.
- e. Practice environment-friendly methods and processes (Environment related).

The ADOs are best developed through laboratory/field-based exercises. Moreover, the level of achievement of the ADOs, according to Krathwohl's Affective Domain Taxonomy, should gradually increase as planned below:

- I. Valuing Level in 1st year
- II. Organization Level in 2nd year.
- III. Characterization Level in 3rd year.

8. UNDERPINNING THEORY

Based on the higher level UOs of Revised Bloom's taxonomy formulated for developing COs and competency, the primary underpinning theory is given below. If required, more such UOs could be included by the course teacher to focus on attaining COs and competency.

Unit	Unit Outcomes(UOs) (4 to 6 UOs at different levels)	Topics and Sub-topics
	1a. Develop familiarity with	1.1 Manufacturing system
Unit – I	manufacturing systems and	definition & Features of
	its features. Components and	Manufacturing system.
Introduction.	types.	1.2 History of the industrial
	1b. Describe role of computers	revolution and
	in manufacturing industries.	Manufacturing evolution.
	1c. Identify the stage of	1.3 Components and types of
	given product on product	manufacturing system.
	life cycle.	1.4 Role of computers and
	1d. Identify the stage of	information technology in
	specified technology on	manufacturing and
	technology life cycle.	manufacturing systems.
	1e. Explain the need to	1.5 Product life cycle its
	manufacture products at	importance &Technology life
	international competitive	cycle.
	price with better quality &	1.6 Scope, trends and challenges
	Innovation.	in Indian and global market.
		2.1 GT - concept, definition,
Unit – II	2a. Select type of production	need, scope, & benefits.
	layouts for given parts.	2.2 Production layout-types,

Group Technology (GT) & Cellular Layout. Unit – III Flexible Manufacturing Cell and System.	 2b. Select and develop GT codes for given parts. 2c. Identify features and develop part families of the given parts. 2d. Prepare cell layout of given part family. 3a. Identify role of major Elements of FMC/FMS. 3b. Explain Major Elements of FMC/FMS. 3c. Develop simple FMC/FMS layout for given data and family of components. 3d. Illustrate cases in which flexible manufacturing systems are effectively applied and suggest possible applications. 	 features and applications. 2.3 GT Layout -concept, need, benefits, comparison with conventional layout with examples. 2.4 GT- codification systems- types, method of coding and examples. 2.5 Part features- concept, types and examples. 2.6 Part family- concept, method to form and approach to form cell using part families. 2.7 Types and comparison of cell: manual and automatic cell, assembly cell. 2.8 Cell layout. 3.1 Flexible Manufacturing Cell (FMC) System (FMS) a – concept, definition and comparison with other manufacturing systems. 3.2 Major elements of F M C / FMS and their functioning: i. Tool handling system. ii. Material handling system. iii. Automated guided Vehicles (AGV). iv. Automated storage and retrieval system (AS/RS). v. Main frame computer. 3.3 FMS layout - concept, types and applications. 3.4 Data required developing an FMS layout. 3.5 Signal flow diagram and line balancing in FMS. 3.6 Alternatives Approaches to flexible manufacturing system
Unit – IV	4a. Identify basic elements of	4.1 Introduction to Automation &Basic
Automation and control technology	an automated system. 4b. Explain various level of Automation. 4c. Explain Industrial control	elements of Automated System. 4.2 Level of Automation. 4.3 Introduction to Industrial

	· · · · · · · · · · · · · · · · · · ·	
	system. 4d. Identify difference between process industries and discrete manufacturing. 4e. Identify Control technology.	 control system. 4.4 Process industries verses discrete manufacturing. 4.5 Continuous verses discrete control. 4.6 Sensors and Actuators used in Automation.
Unit – V Robotics.	5a. Identify the basic parts of a Robot.5b. Differentiate between	5.1 Robots-concept, definition, benefits and various areas of application in Manufacturing systems.
	 different robotic configurations and their functions. 5c. Identify different types of sensors used in Robotics. 5d. List the three general areas of industrial robot application. 5e. Evaluate the use of robots in manufacturing Industries. 	 5.2 Terminology used in Robotics. Robots-types, physical configuration, classification and selection criterion. 5.3 Axes nomenclature of Robots. Types and uses of Manipulators & Grippers. 5.4 Sensors- types, classifications, working principle and applications of position, force & torque, proximity, vision, velocity & acceleration sensors. 5.5 Overview of robot programming methods & languages.
Unit – VI Discrete control Programmable Logic Controller (PLC)	 6a. Identify need of process control logic control and sequence control. 6b. Explain the various components of a 6c. Explain about need and types of PLC. 	 6.1 Introduction to Discrete Process Control. 6.2 Logic Control. 6.3 Sequence Control. 6.4 Introduction and need of Programmable Logical Controller (PLC). 6.5 Components of PLC. .
Unit –VI Industry 4.0	 . 7a. To impart basic idea in Industry 4.0. 7b. To provide students knowledge of need design principle of 	 7.1 Historical evolution, origin and key understandings of Industry 4.0 7.2 Need, Design principal

	I	
	Industrial 4.0 7c Identify and aware with various technologies of Industry 4.0	and current and future trends in Industry 4.0 7.3 .Industry 4.0 Technologies 7.4 Environmental Management and its technology in Industry 4.0
Unit – VIII Recent Trends in manufacturing system.	 8a. Identify the applications of various advance techniques used in Manufacturing. 8b. Identify and aware with environmental friendly Manufacturing system. 	 technology in Industry 4.0 8.1 Computer Aided Process Planning (CAPP) – concept, types, features, methods and importance and introduction to concurrent engineering. 8.2 Computer Integrated Manufacturing (CIM): need, block diagram, functional areas covered and their importance. Computer Aided Inspection (CAI) – concept, benefit, types, working and examples. Coordinate Measuring Machine (CMM) - its working and applications. Concept of reverse engineering. 8.3 Factory of future (FOF) and smart factory. 8.4 Artificial intelligence concept, definition and application areas. 8.5 Lean Manufacturing and waste reduction, Toyota Production System principles and Methodologies. 8.6 Just in Time (JIT) manufacturing – Pull and push types of
		manufacturing systems.8.7 Green Manufacturing.8.8 Additive manufacturing: concept and types

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit No. Unit litie leaching Distribution of Theory Marks	Unit No. Unit Title Teaching Distribution	on of Theory Marks
---	---	--------------------

		Hours	R	U	Α	Total
			Level	Level	Level	Marks
I	Introduction.	04	02	04	00	06
II	Group Technology (GT) & Cellular Layout.	06	03	03	06	12
III	Flexible Manufacturing System (FMS).	06	03	03	06	12
IV	Automation and control technology.	04	04	02	00	06
V	Robotics.	06	04	03	03	10
VI	Discrete control Programmable Logic Controller (PLC).	04	03	03	00	06
VII	Industry 4.0	04	03	03	00	06
VIIi	Recent Trends in Manufacturing system.	08	06	06	00	12
		42	27	28	15	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student- related cocurricular activities which can be undertaken to accelerate the attainment of the various outcomes in this course.

Sr. No.	Activity
1	Prepare a list of mechanical features based innovative product/products in the market that faces challenges related to quality or cost.
2	Prepare a list of mechanical features based creative ideas that can be converted into products.
3	Visit nearby industry or other technical institute (having more infrastructure and facilities) and present a case study covering the scope of this subject.
4	Visit or participate in the technical events, exhibition, conference, seminar (with Presentation).
5	Collect / download videos / presentations / case study on advances in Manufacturing systems.
6	Watch innovative technical shows or documentary on television or other social media.
7	Download and study at least two research paper related to advance manufacturing system and write review on it.
8	Participation in various technical events, project competition, quiz organized by various technical institute in state.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (If any)

These are sample strategies that the course teacher can use to accelerate the attainment of the various outcomes in this course.

Sr.	Unit	Unit Title	Strategies			
No.	No.					
1		Introduction.	Presentation, Video.			
2	II	Group Technology (GT) & Cellular Layout.	Presentation, Video, Assignment, Industrial Visit, demonstration of real parts with features identification.			
3	Ш	Flexible Manufacturing System (FMS).	Presentation, Video, Simulated models.			
4	IV	Automation and control technology.	Presentation, Video, Simulated models.			
5	V	Robotics.	Demonstration, Video, Presentation, Industrial Visit, Mini Project.			
6	VI	Industry 4.0	Demonstration, Video, Presentation, Industrial Visit, Mini Project			
7	VII	Discrete control Programmable Logic Controller (PLC).	Demonstration, Video, Presentation, Simulated models.			
8 VIII		Recent Trends in Manufacturing system.	Video, Case study, Industrial Visit, Seminars. Various softwares			

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her at the beginning of the semester. In the first four semesters, the micro-projects are group-based (groups of 3 to 5). However, **in the fifth and sixth semesters**, the number of students in the group should **not exceed here**.

The micro-project could be industry application based, internet-based, workshop-based, laboratorybased, or field-based. Each micro-project should encompass two or more Cos which are, in fact, an integration of ADOs. student а PrOs, Uos, and Each must maintain dated workdiaryconsistingofindividualcontributionstotheprojectworkandgiveaseminarpresentationbefore submission. The duration of the micro project should be about 14-16 (fourteen to sixteen) student engagement hours during the course. The students ought to submit a micro-project by the end of these semesters to develop the industry-oriented Cos.

A representative list of micro-projects is given here. This has to match the competency and the Cos. Similar micro-projects could be added by the concerned course teacher or using suggested student activity.

A representative list of micro-projects is given here. The concerned faculty could add similar microprojects in any form (chart/presentation/report/model):

Sr. No.	Unit No.
1	Prepare detail report on history of manufacturing.
2	Prepare detail list of various industries with its main products.
3	Code the given part using GT coding system.
4	Prepare simple FMS layout based on given inputs.
5	Prepare simple ladder diagram for given conditions for PLC.
6	Select the suitable sensor for given conditions.
7	Identify various terminologies with robot model/sketch.
8	Select the suitable sensor for given conditions.
9	Sketch geometrical configuration of given type of robot.
10	Identify robotic elements. Select suitable gripper for given part.
11	Identify various terminologies with robot model/sketch.
12	Identify 7 waste in nearby industry and apply principal of lean manufacturing.
13	Prepare detail report on history of Flexible manufacturing system and group technology.
14	Prepare Case study on rank order clustering method for group technology.
15	Prepare detail report with example group technology machine sequence method.
16	Identify various additive manufacturing process and system and prepare report
_	

List of Sample Micro project (Indentify similar type of micro project by Faculty)

[•] Faculty member can give their own creative and innovative micro project related to subject and topic covered

13. SUGGESTED LEARNING RESOURCES

Sr. No.	Title of Book	Author	Publication		
1	CAD/CAM/CIM	P. Radhakrishnan & S. Subranarayan	New Age Intentional		
2	Computer Integrated	Bedworth, Wolfe	McGraw Hill International		
2	Design & Manufacturing	and Anderson	Publication		
3	Mechatronics	-	HMT		
4	Introduction to Robotics	Arthur J. Critchlow	McMillan publication		
5	Robotics for engineers	Yorom Koran	McGraw Hill Publication		
6	Computer aided	Rao, Tiwari &	Tata McGraw		
0	manufacturing	Kundra	Hill Publication		
7	Computer Aided Design & Manufacturing	Dr. Sadhu Singh	КР		
8	Computer Integrated	S. K. Vajpayee	PHI		
	Automation Draduction				
٩	and Computer integrated	Mikell P. Groover	РНІ		
5	Manufacturing	WIREI F. GIOOVEI			
10	Mechatronics	Bradleg and Offers	Chapman and Hall		
		William C. Burns Jr.			
11	Practical Robotics	& Janet Evans	РНІ		
		Worthington			
12	Lean Six Sigma Pocket Tool book	George Metal	McGraw-Hill Publishers		
13	Materials and Processes in Manufacturing	E.P. DeGarmo, J.T. Black, R. Kohser & B. Klamecki	Hoboken, NJ: John Wiley & Sons Inc.		
14	Industrial Automation and Robotics	A.K.Gupta S.K.Arora JR.Wescott	Mercury learning and Information		
15	Industry 4.0 Current Status and Future Trends	Edited by Jesús Hamilton Ortiz	Intech Open(Published in UK)		

14. SOFTWARE/LEARNING WEBSITES

- I. <u>http://www.vlab.com</u>
- II. <u>http://www.mtabindia.com</u>
- III. <u>www.cadcim.com</u>
- IV. <u>https://www.leanproduction.com/</u>
- V. <u>https://intelitek.com</u>
- VI. https://instrumentationtools.com/plc-trainer-demo-download

- VII. <u>https://www.siemens.com/global/en/products/automation</u>
- VIII. <u>https://www.tinkercad.com/</u>

15. PO-COMPETENCY-CO MAPPING

Advance Manufacturing System (Course Code: 4351906)										
	POs and PSOs									
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7			
Competency & Course Outcomes	Basic & Disciplin e specific knowled ge	Proble m Analysi s	Design / develo pment of solutio ns	Engineer ing Tools, Experim entation &Testing	Engineer ing practice s for society, sustaina bility & environ ment	Project Manag ement	Life-long learning			
CO 1: Explain role of computers and information technology in manufacturing systems with concept of technological life cycle and product life cycles.	3	-	-	-	ł	-	3			
CO 2: Develop an FMS (Flexible Manufacturing System) layout for given simple part family, using group technology concepts to and make proper grouping as per their attributes.	3	2	2	2	ł	-	2			
CO 3: Recognize use of Automation and control technology in industries.	3	3	2	3	2	-	3			
CO 4: Recognize use of robotics Industrial automation, programmable logic controllers in modern manufacturing system.	3	2	3	3	2	2	2			
CO 5: Recognize use of recent trends in modern manufacturing system.	3	-	-	-	ł	2	2			

Legend: '3' for high, '2' for medium, '1' for low ,and '-'f or no correlation of each CO with PO.

Sr. No.	Name and Designation	Institute	Contact No.	Email
1.	Vinitkumar K. Modi	B.& B Institute of Technology, Vallabh Vidyanagar	9428661810	<u>modi_vinit@yahoo.co</u> <u>m</u>
2.	Vimalkumar Palsanwala	Dr. S & S S Ghandhy College of Engineering and Technology, Surat	9824703832	vppalsanawala@rediff mail.com
3.	Suhailkhan Zafarullakhan Pathan	Government Polytechnic, Jamnagar	9925479189	<u>er.suhailkhan@gmail.c</u> <u>om</u>

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE (GTU Resource Persons)

17. BOS Resource Persons

Sr. No.	Name and Designation	Institute	Contact No.	Email	
1.	Dr. S. H. Sundarani, BOS (Chairman & HOD Mechanical Engineering)	Government Polytechnic, Ahmadabad	9227200147	gpasiraj@gmail.com	
2.	Dr. Rakesh D. Patel (BOS Member & HOD Mechanical Engineering)	B. & B. Institute of Technology, Vallabh Vidyanagar	9825523982	rakeshgtu@gmail.com	
3.	Dr. Atul S.Shah (BOS Member & Principal)	B. V. Patel Institute of Technology, Bardoli	7567421337	Asshah97@yahoo.in	

ANNEXURE – I

LIST OF PARTS FOR "HOW IT'S MADE"

SR. NO.	ΤΟΡΙϹ	SR. NO.	ΤΟΡΙϹ				
1	Glass.	31	Plastic bags.				
2	Capsules (medicine).	32	PVC room/mobile house.				
3	Tablets (medicine).	33	Pipes-ERW, seam less, PVC/steel, small to very large size.				
4	Safety pin.	34	Oil paint.				
5	Plastic chair.	35	Refilling of gas cylinders.				
6	Springs.	36	Televisions / computer monitors.				
7	Chain (cycle).	37	Drug (liquid) manufacturing.				
8	Bearings.	38	Diamond polishing.				
9	Plastic bottle.	39	Lamps- conventional (resistance).				
10	Milk/oil pouch packaging.	40	CFL lamps.				
11	PCBs.	41	LED lamps.				
12	Nut/bolts.	42	Car assembly.				
13	Crank shaft.	43	Truck assembly.				
14	Piston/cylinder.	44	Aero plane assembly.				
15	Vitrified tiles.	45	Screw Driver				
16	Electrical wires / cables.	46	Glass bottles				
17	Steel wire ropes.	47	Flange couplings				
18	Electrical switches.	48	Worm Gear				
19	Pouch printing.	49	Helical Gear				
20	Cloth manufacturing. (Textile).	50	Mobile phone				
21	Cloth printing (Textile).	51	Turbine Blade				
22	Embroidery machine working.	52	Direction Control valves				
23	Bottling. (Of soda, beverages, etc.)	53	Pulley and Belt				
24	Lathe bed.	54	Screw Conveyor				
25	Bikes engine.	55	Stepper Motor				
26	Computer's hard disc.	56	Servo motor				
27	Circlips.	57	Piston and piston ring				
28	Oil seals.	58	Spark plug				
29	Semiconductors.	59	Carburetor				
30	Product made from Micro machining.	60	Any other specified by faculty				

ANNEXURE –II

PROCESS SHEET/DETAILS- TO BE MADE FOR EACH PART SEPARATELY.

Part No/Id:	Raw material:	
Name of the Part:	Raw weight:	
Drawing No:	Finished wt:	

Op. No	Name of Operation	Size, tolerance , surface finish, etc. required		Machining Parameters		Tools, Jig, Fixture,	Locating Clampin surface surface	Clamping surface	ıg Time		-		
			, surface finish, etc. required	Machi ne details	spe ed	feed	Depth of cut	coolant, ietc. required	Measuring instruments required	(Give surface	e (Give lice surface	Set up (Min.)	Machini ng (Min.)