

Program Name: Bachelor of Engineering Level: UG Subject Code: BE03000081 Subject Name: Data Structures

| w. e. f. Academic Year: | 2024-25                  |
|-------------------------|--------------------------|
| Semester:               | 3                        |
| Category of the Course: | Professional Core Course |

| Prerequisite: | Computer Programming & Utilization                                                   |  |  |  |
|---------------|--------------------------------------------------------------------------------------|--|--|--|
| Rationale:    | Data structure is a subject of primary importance in Information and                 |  |  |  |
|               | Communication Technology. Organizing or structuring data is important for            |  |  |  |
|               | implementation of efficient algorithms and program development. Efficient            |  |  |  |
|               | problem solving needs the application of appropriate data structure during program   |  |  |  |
|               | development.                                                                         |  |  |  |
|               | Understanding of data structures is essential for software development because       |  |  |  |
|               | they help organize and manipulate data efficiently. Choosing the right data          |  |  |  |
|               | structure can make your programs run faster and use less memory. The course will     |  |  |  |
|               | help students to develop the capability of selecting a particular data structure and |  |  |  |
|               | apply it to solve problems effectively.                                              |  |  |  |

#### **Course Outcomes:**

| Sr.  | CO Statement                                                                                                                                                |           |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| No.  |                                                                                                                                                             | weightage |
| CO-1 | Define and classify various data structures, storage structures and common operations on them.                                                              | 10        |
| CO-2 | Use various linear data structures with their representation and perform different operations on them.                                                      | 20        |
| CO-3 | Use various nonlinear data structures with their representation and perform different operations on them.                                                   | 20        |
| CO-4 | Apply various searching and sorting techniques on small and large data set.                                                                                 | 30        |
| CO-5 | Solve the given problem using an appropriate data structure to achieve optimal performance and compare its performance with Other possible data structures. | 20        |

### **Teaching and Examination Scheme:**

| Teaching - Learning Scheme<br>(in Hours per Semester) |   |    | Assessment Pattern and Marks |        |         |                      | Total |              |               |         |       |
|-------------------------------------------------------|---|----|------------------------------|--------|---------|----------------------|-------|--------------|---------------|---------|-------|
|                                                       |   |    | Credits                      | Theory |         | Tutorial / Practical |       |              |               |         |       |
| L                                                     | Т | Р  | TW/SL                        | ТН     | = TH/30 | ESE                  | PA    | PA/          | TW/           | ESE (V) | Marks |
|                                                       |   |    |                              |        |         | <b>(E)</b>           | (M)   | ( <b>I</b> ) | <b>SL (I)</b> |         |       |
| 45                                                    | 0 | 60 | 15                           | 120    | 04      | 70                   | 30    | 20           | 30            | 50      | 200   |



Program Name: Bachelor of Engineering Level: UG Subject Code: BE03000081 Subject Name: Data Structures

### **Contents:**

| Sr. No. | Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Teaching<br>Hrs | Module<br>Weightage |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|
| 1       | INTRODUCTION TO DATA STRUCTURES:<br>Basic Terminology, Classification of Data Structure-<br>Primitive and Non Primitive Data Structure, Linear and<br>Non-Linear Data Structures, Examples of Primitive and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 04              | 10                  |
|         | Non Primitive Data Structures, storage representation of<br>Primitive and Non Primitive Data Structures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                     |
| 2       | LINEAR DATA STRUCTURE<br><b>Array:</b> Representation of arrays, Applications of arrays,<br>sparse matrix and its representation<br><b>Stack:</b> Stack-Definitions & Concepts, Operations On<br>Stacks, Applications of Stacks, Polish Expression,<br>Reverse Polish Expression And Their Compilation,<br>Recursion, Tower of Hanoi<br><b>Queue:</b> Representation Of Queue, Operations On Queue,<br>Circular Queue, Priority Queue, Array representation of<br>Priority Queue, Double Ended Queue, Applications of<br>Queue<br><b>Linked List:</b> Singly Linked List, Doubly Linked list,<br>Circular linked list, Linked implementation of Stack,<br>Linked implementation of Queue, Applications of linked<br>list. | 13              | 30                  |
| 3       | NON LINEAR DATA STRUCTURE :<br><b>Trees:</b> Definitions and Concepts, Representation of<br>binary tree, Binary tree traversal (Inorder, postorder,<br>preorder), Threaded binary tree, Binary search trees,<br>Conversion of General Trees To Binary Trees,<br>Applications Of Trees<br><b>Graphs:</b> Graph-Matrix Representation Of Graphs,<br>Elementary Graph operations,(Breadth First Search,<br>Depth First Search, Spanning Trees, Shortest path,<br>Minimal spanning tree )                                                                                                                                                                                                                                     | 13              | 30                  |
| 4       | HASHING AND FILES TRUCTURES:<br>Hashing: The symbol table, Hashing Functions,<br>Collision- Resolution Techniques<br>File Structure: Fixed and variable length record, File<br>organizations: Sequential, Random Access, indexed and<br>Relative/Random File Organization                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 07              | 15                  |



Program Name: Bachelor of Engineering Level: UG Subject Code: BE03000081 Subject Name: Data Structures

| 5 | Sorting & Searching:<br>Sorting: Various sorting techniques: Bubble Sort,<br>Selection Sort, Insertion Sort, Quick Sort, Merge Sort,<br>Heap Sort<br>Searching: Sequential Search and Binary Search | 08 | 15  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
|   | TOTAL                                                                                                                                                                                               | 45 | 100 |

#### **Reference Books:**

- 1. An Introduction to Data Structures with Applications. By Jean-Paul Tremblay & Paul G. Sorenson Publisher-Tata McGraw Hill.
- 2. Data Structures using C & C++ By Tanenbaum Publisher Prentice-Hall International.
- 3. Fundamentals of Computer Algorithms by Horowitz, Sahni, Galgotia Pub. 2001 ed.
- 4. Fundamentals of Data Structures in C++ By Sartaj Sahani.
- 5. Data Structures: A Pseudo-code approach with C -By Gilberg & Forouzan Publisher-

Thomson Learning.

#### List of Practical:

At least 10 practical should be performed by students using programming language.

- 1. Write a program to demonstrate the concepts of Call by Value and Call by reference.
- 2. Write a program to perform addition, subtraction, and multiplication of matrices using arrays.
- 3. Implement a stack using arrays and perform the following operations: Push, Pop, Peek, and Display.
- 4. Write a program to convert an infix expression to postfix using a stack.
- 5. Write a program to evaluate a postfix expression using a stack.
- 6. Implement the Tower of Hanoi problem using recursion.
- 7. Write a program to implement a queue using arrays and perform Enqueue, Dequeue, and Display operations.
- 8. Implement a circular queue using arrays and demonstrate its operations.
- 5. Write a menu driven program to implement following operations on the singly linked list.
  - (a) Insert a node at the front of the linked list.
  - (b) Insert a node at the end of the linked list.
  - (c) Insert a node such that linked list is in ascending order. (according to info. field)
  - (d) Delete the first node of the linked list.
  - (e) Delete a node with a given value in info. field.
  - (f) Delete a node after specified position.
- 6. Write a program to implement stack using linked list.
- 7. Write a program to implement queue using linked list.
- 8. Write a program to implement following operations on the circular linked list.
  - (a) Insert a node at the end of the linked list.
  - (b) Insert a node before specified position.



### Program Name: Bachelor of Engineering Level: UG Subject Code: BE03000081 Subject Name: Data Structures

- (c) Delete a first node of the linked list.
- (d) Delete a node after specified position.
- 9. Write a program to implement following operations on the doubly linked list.
  - (a) Insert a node at the front of the linked list.
  - (b) Insert a node at the end of the linked list.
  - (c) Delete a last node of the linked list.
  - (d) Delete a node before specified position.
- 10. Implement recursive and non-recursive tree traversing methods for a binary tree inorder, preorder and post-order traversal.
- 11. Write a program which create binary search tree. Also write a function to search an element from binary search tree.
- 12. Implement a graph using adjacency matrix and adjacency list representations.
- 13. Write a program to implement Bubble Sort.
- 14. Implement Quick Sort algorithm.
- 15. Write a program to implement Insertion Sort.
- 16. Write a program to implement binary search on a sorted array.
- 17. Write a program to create and display records using sequential file organization.

List of Open Source Software/learning website: Students must refer to following sites to enhance their learning ability.

- 1. NPTEL courses
- 2. Vlabs.iitb.ac.in
- 3. MOOCs www.coursera.org, www.udacity.com, etc.

### • Activities suggested under self-learning:

| SI. | Name of the activity                                                                                        | No. of hours                                                                        | Evaluation Criteria                                               |
|-----|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| No. |                                                                                                             |                                                                                     |                                                                   |
| 1   | Assignment writing. Numerical based assignment is preferable.                                               | 5 assignments of 3h each. Total = 15h                                               | Based on the<br>assignment<br>submitted.                          |
| 2   | Problem solving/Coding using C, C++,<br>Python, SCILAB, MATLAB, MS-<br>EXCEL or any other relevant software | 5 small coding-based problems of<br>3h each. Total = 15h                            | Based on the coding solution submitted.                           |
| 3   | Technical Video based learning related to the subject                                                       | Duration of video = 5h<br>Report preparation & Presentation<br>= 10h<br>Total = 15h | Report /presentation<br>based on the video<br>learning outcomes.  |
| 4   | Discussion on research paper based on relevant subject                                                      | 3 research paper = 15h                                                              | Summarize research<br>paper and evaluation<br>critical parameters |
| 5   | Poster/chart/power point preparation<br>on technical topics                                                 | Duration = 10 h                                                                     | Based on poster/chart<br>preparation and<br>presentation skills   |
| 6   | Application/Software development                                                                            | Duration = 15 h                                                                     | Depending on the complexity of the                                |



### Program Name: Bachelor of Engineering Level: UG Subject Code: BE03000081 Subject Name: Data Structures

|    |                                                                                                                                     |                                                                                                                       | Application/Software                                                                                                       |
|----|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 7  | Group Discussion on<br>emerging/trending technical topics<br>based on subject                                                       | Duration = 1 h each                                                                                                   | Based on<br>performance in group<br>discussion, technical<br>depth, knowledge                                              |
| 8  | Seminar / Presentation                                                                                                              | Duration for study and<br>preparation=5h<br>Report writing=3h<br>Presentation=2h<br>Total=10h                         | Topic can be selected<br>technical content<br>beyond syllabus                                                              |
| 9  | Real world case studies-based learning                                                                                              | Duration of data collection/study =<br>5h<br>Report preparation = 10h<br>Total = 15h                                  | Based on in-depth<br>study, technical<br>depth, data collected,<br>fact finding, etc.                                      |
| 10 | Working/non-working model on technical topics                                                                                       | Working = 12 h<br>Non- working = 8 h                                                                                  | Based on inter<br>department/external<br>evaluation                                                                        |
| 11 | Self-learning on-line course                                                                                                        | Minimum duration of the course should be 15h.                                                                         | Examination based<br>assessment at the end<br>of course. Based on<br>the certificate<br>produced.                          |
| 12 | Complex problem solving                                                                                                             | Maximum 3 problem. Study of the<br>problem and solution finding, Total<br>= 15h                                       | Based on the depth<br>of the solution<br>submitted.                                                                        |
| 13 | Industry/Research laboratory visit                                                                                                  | Visit = 5h, Report preparation = 5h<br>Total = 10h                                                                    | Based on report<br>submitted. Report<br>should contain<br>observations and<br>calculations based on<br>industry/ lab data. |
| 14 | Videos on Industrial safety aspects<br>based on subject                                                                             | Duration of video = 5h<br>Report preparation = 5h<br>Total = 10h                                                      | Based on quiz/report submitted                                                                                             |
| 15 | Industrial exposure for 2-3 days to<br>observe and provide tentative solutions<br>on society/environment /health/any<br>other issue | Duration = 15 h for industrial<br>exposure<br>Problem identification and tentative<br>solution = 10 h<br>Total = 20 h | Based on evaluation<br>of critical problems<br>and solutions                                                               |

Note:

- All the suggested activity should be related to the subject.
- Min 3 activities must be carried out as per the availability of faculties and students.
- The number of hours is suggestive. Faculty can sub-divide the number of hours based on the activity. However, total number of hours is fixed.
- Rubrics for the evaluation can be prepared by the faculty.



Program Name: Bachelor of Engineering Level: UG Subject Code: BE03000081 Subject Name: Data Structures

- All records pertaining to the evaluation and assessment of self-learning activities must be properly maintained and preserved at the institute level. These records should be made available to the university upon request.
- Institutes are encouraged to utilize digital platforms, such as Microsoft Teams, for effective record-keeping and to ensure transparency in the evaluation and assessment of self-learning activities.

\*\*\*\*\*\*\*