

Program Name: Diploma in Engineering

Level: Diploma

Branch: Electrical Engineering, Renewable Energy, Automation and Robotics Instrumentation & Control Engineering, Power Electronics Engineering Course / Subject Code: DI02000021

Course / Subject Name: Engineering Mathematics

w. e. f. Academic Year:	2024
Semester:	2 nd
Category of the Course:	BSC

Prerequisite:	Function, Logarithm, Determinant, Trigonometry, Limit, Factorization, Polynomial, Quadratic Equation, Coordinate Geometry, LCM, GCD, Concept of Set.
Rationale:	This course is an extension of the course Mathematics-I of first semester namely Engineering Mathematics. The course is designed to inculcate its applications in relevant branch of engineering and technology using the techniques of Differentiation, Integration, Differential equations, Matrix theory and Complex numbers. The course is structured with an emphasis on multidisciplinary learning and skill development, ensuring that students can apply mathematical techniques and concepts effectively in their vocational and technical areas. Its elements are designed to be thorough, hands-on, and aligned with both academic standards and professional expectations.

Course Outcome:

After Completion of the Course, Student will able to:

No	Course Outcomes	RBT Level
01	Demonstrate the ability to Crack engineering related problems based on Matrices.	A(Application)
02	Demonstrate the ability to solve engineering related problems based on applications of differentiation.	A(Application)
03	Demonstrate the ability to solve engineering related problems based on applications of integration.	A(Application)
04	Develop the ability to apply differential equations to significant applied problems.	A(Application)
05	Represent complex numbers algebraically and geometrically for solving engineering related problems.	A(Application)

^{*}Revised Bloom's Taxonomy (RBT)

Program Name: Diploma in Engineering

Level: Diploma

Branch: Electrical Engineering, Renewable Energy, Automation and Robotics Instrumentation & Control Engineering, Power Electronics Engineering Course / Subject Code: DI02000021

Course / Subject Name: Engineering Mathematics

Teaching and Examination Scheme:

	ching Sche	eme	Total Credits L+T+ (PR/2)	Assessment Pattern and Marks			Total	
L	Т	PR	C	ESE DA / CA		Tutorial / I PA/CA (I)	Practical ESE (V)	Marks
3	1	0	4	70	30	00	00	100

Course Content:

Unit No.	Content		% of Weightage
1. Matrices	I matrices		23
2. Differentiatio n and its Applications	 2.1. Concept and Definition of Differentiation 2.2. Working rules: Sum, Product, Division 2.3. Chain Rule 2.4. Derivative of Implicit functions 2.5. Derivative of Parametric functions 2.6. Logarithmic Differentiation 2.7. Successive Differentiation up to second order 2.8. Applications: Velocity, Acceleration, Maxima & Minima of given simple functions. 	11	23
3.1 Concept and Definition of Integration. 3.2 Working rules and Integral of standard functions. 3.3 Method of substitution. 3.4 Integration by parts. Applications 3.5 Definite Integral and its properties. 3.6 Applications: Area and volume. (Simple problems)		10	20

Program Name: Diploma in Engineering

Level: Diploma

Branch: Electrical Engineering, Renewable Energy, Automation and Robotics Instrumentation & Control Engineering, Power Electronics Engineering Course / Subject Code: DI02000021

Course / Subject Name: Engineering Mathematics

4.	4.1 Concept and Definition, Order and Degree of differential equation.		
Differential Equations	4.2 Solution of DE of first degree and first order by Variable Separable method.	7	17
5. Complex Numbers	 4.3 Solution of linear Differential equation. 5.1 Concept of Complex number. 5.2 Algebra of Complex numbers. 5.3 Conjugate, Modulus and inverse of Complex numbers. 5.4 Argument and Polar form of a Complex number. 5.5 De Moivre's Theorem and related simple examples. 5.6 Square root of a Complex number and cube root of unity. 	7	17
	Total	45	100

Suggested Specification Table with Marks (Theory):

Unit	Unit Title	Distribution of Theory Marks						
No.		R Level	U Level	A Level	N Level	E Level	C Level	Total
1	Matrices	4	6	6	0	0	0	16
	Differentiation and its Applications	4	6	6	0	0	0	16
	Integration and its Applications	4	4	6	0	0	0	14
4	Differential Equations	2	4	6	0	0	0	12
5	Complex Numbers	2	4	6	0	0	0	12
	Total		24	30	0	0	0	70
0/0		23	34	43	0	0	0	100

Where R: Remember; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create (as per Revised Bloom's Taxonomy

References/Suggested Learning Resources:

(a) Books:

S. No	Title of Book	Author	Publication with place, year and ISBN
1	Elementary Engineering	B. S. Grewal	Khanna Publishers,15th Edition.
	Mathematics		ISBN: 978-81-7409-257-1
2	Engineering Mathematics	Croft, Anthony	Pearson Education, New Delhi,
	(Third edition).		2014.ISBN 978-81-317-2605-1

Program Name: Diploma in Engineering

Level: Diploma

Branch: Electrical Engineering, Renewable Energy, Automation and Robotics Instrumentation & Control Engineering, Power Electronics Engineering Course / Subject Code: DI02000021

Course / Subject Name: Engineering Mathematics

S. No	Title of Book	Author	Publication with place, year and ISBN
1	Elementary Engineering Mathematics	B. S. Grewal	Khanna Publishers,15th Edition. ISBN: 978-81-7409-257-1
3	Calculus and Its Applications	Marvin L. Bittinger David J. Ellenbogen Scott A. Surgent	Addison-Wesley 10th Edition ISBN-13: 978-0-321-69433-1
4	Calculus and Analytic Geometry	G. B. Thomas, R. L. Finney	Addison Wesley, 9th Edition, 1995.ISBN 978-8174906168
5	Understanding Engineering Mathematics	John Bird	Routledge; 1st edition ISBN 978-0415662840
6	Advanced Engineering Mathematics	Krezig, Ervin	Wiley Publ., NewDelhi,2014, ISBN: 978-0-470-45836-5
7	Mathematics-I	Deepak Singh	Khanna Book Publishing Co ISBN: 978-93-91505-42-4
8	Mathematics-II	Garima Singh	Khanna Book Publishing Co ISBN: 978-93-91505-52-3

(b) Open-source software and website:

	1 // /1 /1 I/I/O/ N/ OCTOONICE A/C 1				
	• https://www.youtube.com/channel/UCLJVrQyPYsseCf78QWCDsvA/featured				
	(YouTube Channel of DTEGUJ)				
	• https://www.geogebra.org/?lang=en				
	• https://phet.colorado.edu/				
	• www.dplot.com/ - DPlot				
	• www.wolfram.com/mathematica/				
	• https://www.khanacademy.org/				
	• www.easycalculation.com				
	• www.scilab.org/ - SCI Lab				
	• https://ncert.nic.in/textbook/pdf/lemh102.pdf				
	• https://www.geeksforgeeks.org				
Apps in	National Digital Library				
Google Play	e-Granthalaya				
Store	NSDC eBook Reader: KaushalePustakalaya				
	ePathshala				
	IGNOU e-content				

Program Name: Diploma in Engineering

Level: Diploma

Branch: Electrical Engineering, Renewable Energy, Automation and Robotics Instrumentation & Control Engineering, Power Electronics Engineering Course / Subject Code: DI02000021

Course / Subject Name: Engineering Mathematics

List of Laboratory/Learning Resources Required:

1. Computer System, smart phone & LCD Projector

2. Scientific Calculator (Display type: Natural Display Algebraic input logic: Natural V.P.A.M. Significant function: 10+2.)

* * * * * * *