

Program Name: Bachelor of Engineering

Level: UG

Branch: ALL

Subject Code : BE01R00021

Subject Name : Physics

w. e. f. Academic Year:	2024-25
Semester:	I st Year
Category of the Course:	BSC

Prerequisite:	Basic understanding of Calculus, Physics and Mathematics course on Differentiate equations
Rationale:	The basic science - physics program is to prepare students for careers in engineering where physics principles can be applied to the advancement of technology. This education at the intersection of engineering and physics will enable students to seek employment in engineering upon graduation while, at the same time, provide a firm foundation for the pursuit of graduate studies in engineering.

Course Outcome:

After Completion of the Course, Student will able to:

No	Course Outcomes	RBT Level
01	01 The student will apply theoretical and mathematical concepts to solve problems related to properties of matter.	
02	The student will apply basic principles, properties, and applications associated with Waves, Motion, and Acoustics to practical situations	Apply
03	The student will apply basic principles, properties, and various methods of production techniques in Optics to solve real-world problems.	Apply
04	The student will apply fundamental principles of Quantum Physics to analyze and interpret quantum phenomena.	Apply
05	The student will apply the principles of Lasers to understand their properties and applications in science, engineering, and medicine	Apply
06	The student will apply knowledge of new engineering materials, including semiconductors, superconductors, and nanomaterials, to practical engineering problems.	Apply

*Revised Bloom's Taxonomy (RBT)

Program Name: Bachelor of Engineering

Level: UG

Branch: ALL

Subject Code : BE01R00021

Subject Name : Physics

Teaching and Examination Scheme:

	0		ng Scheme emester)	e	Total Assessment		Patter				
L	Т	Р	TW/SL	ТН	Credits =	Theory ESE PA		Tutor PA/	rial / Pra TW/	ctical ESE	Total Marks
	-	-	1		TH/30	(E)	(M)	(I)	SL (I)	(V)	
45	0	30	45	120	04	70	30	20	30	50	200

Where L = Lecture, T = Tutorial, P = Practical, TW/SL = Term-Work / Self-Learning, TH = Total Hours, PA = Progressive Assessment, ESE = End-Semester Examination

Course Content:

Unit No.	Content	No. of Hours	% of Weightage
	PROPERTIES OF MATTER	6	13
	• Stress – Strain – Hooke's law –		
	• Elastic Behaviour of Material –		
	• Young's modulus by cantilever depression –		
	• Non-uniform bending –		
1.	Uniform bending-		
	• Application -I-shaped girders.		
	• Torsional Pendulum – Couple per unit twist of a wire, Time		
	period,		
	• Application- Determination of Rigidity Modulus.		
	WAVES, MOTION AND ACOUSTICS	8	18
	• Simple Harmonic motion, Free, forced, Resonance,		
	• Damped and undamped vibration,		
	Damped harmonic motion,		
2	• Force vibration and amplitude resonance,		
2.	• Velocity resonance and energy intake,		
	• Wave motion, transverse and longitudinal vibration,		
	• Sound absorption and reverberation,		
	• Sabine's formula and usage (excluding derivation),		
	Acoustic of building,		

Program Name: Bachelor of Engineering

Level: UG

Branch: ALL

Subject Code : BE01R00021

Subject Name : Physics

	• Ultrasonic waves - Properties - Generation – Piezoelectric		
	method – Detection- Kundt's tube		
	• Application of Ultrasonics in industries – NDT.		
	OPTICS	8	18
	 Huygens' Principle: Fundamental principle for wave propagation. 		
	 Superposition of Waves: Basic principle for understanding interference and diffraction. 		
	• Explanation of constructive and destructive interference.		
	• Applications in thin film interference, such as soap bubbles		
	and oil films.		
3.	• Young's double slit experiment.		
5.	• Newton's rings,		
	Michelson Interferometer		
	• Anti-reflection coating.		
	• Fresnel and Fraunhofer diffraction – diffraction due to 'n'		
	slits- plane transmission grating.		
	• Rayleigh criterion for limit of resolution - resolving power of		
	grating.		
	QUANTUM PHYSICS	8	18
	Black body Radiation-Planck's law		
	• Energy distribution function,		
	Wave-particle duality-de Broglie matter waves		
	• Concept of the wave function and its physical significance –		
4.	Heisenberg's Uncertainty Principle		
	• Schrodinger's wave equation – Time-independent and Time-		
	dependent equations –		
	• Particle in a one-dimensional rigid box – tunneling		
	(Qualitative) – Scanning Tunnelling Microscope.		
	(Qualitative) – Scanning Tunnelling Microscope.	8	18
5		8	18
5.	LASERS	8	18

Program Name: Bachelor of Engineering

Level: UG

Branch: ALL

Subject Code : BE01R00021

Subject Name : Physics

	Total	45	100
	Applications.		
	PVD method		
	Ball milling		
	approach		
	• Synthesis of nano materials – Top down and Bottom up		
	Introduction		
	NANOMATERIALS:		
	- Applications.		
	 Applications. 		
	 Meissner effect Type I & Type II superconductors 		
6.	 Introduction – Properties Meissner effect 		
	SUPERCONDUCTING MATERIALS:		
	 Zener diode and its characteristics 		
	 Introduction to P-N Junction Diode and I-V characteristics, 		
	 P-type, N-type materials 		
	Concept of carriers,Concept of bands and band gap,		
	Concept of carriers,		
	Properties,		
	Introduction of Group IV elements,		
	NEW ENGINEERING MATERIALS SEMICONDUCTOR MATERIALS:	7	15
			1.5
	 Applications of lasers in science, engineering, and medicine. 		
	 Properties of laser beams: Mono-chromaticity, coherence, directionality and brightness, laser speckles, 		
	• Solid-state lasers (Ruby laser),		
	• Gas lasers (He-Ne),		
	• Different types of lasers,		

A TREAM

GUJARAT TECHNOLOGICAL UNIVERSITY

Program Name: Bachelor of Engineering

Level: UG

Branch: ALL

Subject Code : BE01R00021

Subject Name : Physics

Suggested Specification Table with Marks (Theory):							
Distribution of Theory Marks (in %)							
		ſ					
R Level	U Level	A Level	N Level	E Level	C Level		
30	40	30	0	0	0		

Where R: Remember; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create (as per Revised Bloom's Taxonomy)

References/Suggested Learning Resources:

(a) Books:

- 1. Engineering Physics by Dattu R Joshi, McGraw hill Publications
- 2. Engineering Physics by Shatendra Sharma & Jyotsan Sharma, Pearson Publication
- 3. Optics by Subramaniam N & Brij Lal, S Chand & Co. Pvt. Ltd., New Delhi
- 4. Optics by R.Agarwal, S. Chand
- 5. Fundamentals of Optics by Jenkins A Francis and White E Harvey, McGRaw Hill Inc., New Delhi,
- 6. Concepts of Modern Physics by Arthur Beisser, McGraw Hill
- 7. Modern Physics by R Murugeshan, Kiruthiga, Sivaprasath S Chand
- 8. Quantum Mechanics by V. Devanathan, Narosa, Chennai
- 9. Quantum Mechanics by Sathyaprakash, Pragati Prakashan, Meerut
- 10. Engineering Physics by M.N.Avadhanulu, S.Chand & Company
- 11. Engineering Physics Bhattacharya, Bhaskaran Oxford Publications
- 12. Engineering Physics I & II G. Senthilkumar, VRB publications
- 13. Applied Engineering Physics Rajendran & Marikani (Tata McGraw Hill)
- 14. Applied Physics for Engineers K.Venkatramanan, R.Raja, M.Sundarrajan (Scitech)
- 15. Principles of Electronics by V.K.Mehta, (S.Chand)
- 16. Basic Electronics by B.L.Theraja, S.Chand
- 17. Mechanics of Materials, Barry J. Goodno, James M. Gere, Published
- 18. Fundamentals of Physics, D. Halliday, R. Resnick and J. Walker, John Wiley and Sons, New York.

(b) Open source software and website:

- 1. https://nptel.ac.in/
- 2. https://www.vlab.co.in/

Program Name: Bachelor of Engineering Level: UG Branch: ALL Subject Code : BE01R00021 Subject Name : Physics

Suggested Course Practical List: If any

List of Experiments:

- 1. Diffraction and interference experiments (from ordinary light or laser pointers); measurement of the speed of light on a tabletop modulation; minimum deviation from a prism.
- 2. Measurement of the Distance using Ultrasonic Sensors.
- 3. Study of Object Detection using Ultrasonic Sensors.
- 4. Melde's Experiment Transverse and Longitudinal Modes
- 5. To determine the frequency of a given laser source.
- 6. Frequency of AC Supply-Sonometer method
- 7. Wavelength of Light -Diffraction Grating using LASER
- 8. Acoustic grating method set up for measurement of the velocity of ultrasonic waves in liquid
- 9. Melde's experiment Resonator
- 10. Study of Damped Simple Harmonic Motion
- 11. Newton's rings, Determination of using sodium light.
- 12. Calibration of Spectrometer & determination of unknown wavelength
- 13. Dispersive curve of a prism
- 14. Study of Fabry-Perot Etalon
- 15. Study of Lloyd's Mirror
- 16. Study of Double Refraction in Calcite Prism
- 17. Virtual Heat & Thermodynamics Lab
- 18. Virtual Advanced Mechanics Lab
- 19. Virtual Laser Optics Lab
- 20. Virtual Harmonic Motion & Waves Lab
- 21. Virtual Optics Lab
- 22. Virtual Modern Physics Lab
- 23. Virtual Lab on oscillations
- 24. Virtual Physical Sciences Lab

• Activities suggested under self-learning:

Sl.	Name of the activity	No. of hours	Evaluation Criteria
No.			
1.	Multimedia based conceptual	Duration $= 5h$	Report /presentation
	learning of topics related to	Report preparation $=$ 3h	based on the learning
	Physics	Total = 8h	outcomes.
2.	Assignment writing (Numericals	6 assignments of 2h each.	Based on the assignment
	based assignment is preferable)	Total = 12h	submitted.

http://syllabus.gtu.ac.in/

Program Name: Bachelor of Engineering

Level: UG

Branch: ALL

Subject Code : BE01R00021

Subject Name : Physics

		Subject Maine . 1 II voico	
3.	Self-learningthrough virtual lab experiments(2 Experiments)	Performance = $4 h$ Report preparation = $2 h$	Assessment based on report and viva
		Total = 6 h	1
4.	Poster/chart preparation on technical topics	Total = 4 h	Based on poster/chart preparation
5.	Working model on technical topics and report writing	Idea = 2 h Execution =6 h Report + Presentation = 4 h Total = 12 h	Based on inter department/external evaluation
6.	Assembly of Circuit on the bread board	Duration = $3 h$ Report preparation = $3 h$ Total = $6 h$	Based on circuit and clarity of components used
7.	power point preparation on technical topics and presentation	Preparation = $4 h$ Presentation = $2 h$ Total = $6 h$	Based on ppt prepared, presentation and viva
8.	Study of different physics principles involved in technical industrial equipment/ tools/ processes	Survey/ study = 4 h Report preparation = 4 h Total = 8 h	Based on report
9.	Study of units, conversion and use	Preparation = $4 h$ Quiz = $1 h$ Total = $5 h$	Based on performance in quiz

Note:

1. All the suggested activity should be related to the subject.

2. The number of hours is suggestive. Faculty can sub-divide the number of hours based on the activity. However, total number of hours is fixed.

3. Rubrics for the evaluation can be prepared by the faculty.

* * * * * * *