

GUJARAT TECHNOLOGICAL UNIVERSITY Program Name: Bachelor of Engineering Level: UG Branch: ALL Course / Subject Code: BE01R00051 Course / Subject Name: Basic Electrical Engineering

w. e. f. Academic Year:	2024-25
Semester:	I st Year
Category of the Course:	ESC

Prerequisite:	NA
Rationale:	Electricity has been the main source of energy for the developing and developed
	countries. Per capita consumption of electricity of a country can be considered as
	an indicator of the development of the country. In view of this, it is essential for all
	engineering graduates to know the basic aspects of electrical engineering. This
	subject deals with basic circuit solution methods, introduction to electrical
	machines and basics of domestic electrical installations.

Course Outcome:

After Completion of the Course, Student will able to:

No	Course Outcomes	RBT Level	
01	Apply fundamental electrical laws and circuit theorems to electrical circuits.	Application	
02	Analyze single phase and three phase AC circuits.	Analyze	
03	Describe operating principle and applications of static and rotating electrical machines.	Understand	
04	Understand the wiring methods, electricity billing, and working principles of circuits protective devices and personal safety measures.	Read Understand	&
05	Understand the electrical safety and purpose, types and scope of earthing systems	Read Understand	&

Teaching and Examination Scheme:

Т	eaching (in Hou	/ Learn irs per :	ing Scheme semester)		Total	Asse	ssment	Patter	n and M	arks	
					Credits	The	eory	Tuto	rial / Pra	ctical	Total Marks
L	Т	Р	TW/SL	TH	- TH/30	ESE	PA	PA/	TW/	ESE	Wiai Ko
					111/00	(E)	(M)	(I)	SL (I)	(V)	
45	0	30	45	120	04	70	30	20	30	50	200

Where L = Lecture, T = Tutorial, P = Practical, TW/SL = Term-Work / Self-Learning, TH = Total Hours, PA = Progressive Assessment, ESE = End-Semester Examination

w.e.f. 2024-25

GUJARAT TECHNOLOGICAL UNIVERSITY

Program Name: Bachelor of Engineering Level: UG

Branch: ALL

Course / Subject Code: BE01R00051

Course / Subject Name: Basic Electrical Engineering

Course Content:

Unit No.	Content	No. of Hours	% of Weightage
1.	DC Circuits: Electrical circuit elements (R, L and C), voltage and current independent sources, Kirchoff's current and voltage laws, analysis of simple circuits with dc excitation, Superposition, Thevenin and Norton Theorems, Stardelta/Delta-Star conversion, Time-domain analysis of first-order RL and RC circuits.	7	15
2.	AC Circuits Representation of sinusoidal waveforms, peak, RMS and average values of different signals, form factor and peak factor, Phasor representation of AC quantities, real power, reactive power, apparent power, power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel), Series and parallel resonances, Three phase balanced circuits, voltage and current relations in star and delta connections, Power measurement in three phase balanced circuits.	9	20
3.	Magnetic Circuits & Transformers Magnetic effect of electrical current, cross and dot convention, right hand thumb rule and cork screw rule, Concepts of m.m.f, flux, flux density, reluctance, permeability and field strength, Analogy between electric and magnetic circuits, Magnetic Circuits, B-H Curve, Hysteresis Loop, Hysteresis and Eddy current losses, Construction and working principle of single-phase transformers: Construction, principle of working, voltage and current ratios, losses, definition of regulation and efficiency, Ideal and practical transformer.	8	15
4.	Fundamentals of Electrical Machines Generation of rotating magnetic fields, Construction and working of Single-phase induction motors (Split phase, Capacitor start, Permanent split capacitor, Capacitor start/capacitor run). Single phase induction motor applications: pumps, refrigerators, fans, compressors, and portable drills. Construction and working of brushless DC motors and its application: Electrical Vehicle, washing machines, Blowers, Computers/Laptops	9	20

GUJARAT TECHNOLOGICAL UNIVERSITY

Program Name: Bachelor of Engineering

Level: UG

Branch: ALL

Course / Subject Code: BE01R00051

Course / Subject Name: Basic Electrical Engineering

Electrical Wiring and Installations		
Components of LT Switchgear: Switch Fuse Unit (SFU), MCB,		
ELCB, MCCB.		
Types of lamps, fixtures & reflectors, illumination schemes for		
domestic, industrial & commercial premises, Lumen requirements for		
different categories.		
Earthing – Types of earthing and its importance.	10	20
Safety precautions for electrical appliances.	12	30
Types of Batteries, Characteristics of Batteries (Voltage, storage		
capacity, discharge curve, cycle life).		
Elementary calculations for energy consumption of home appliances		
and electricity bill.		
Basic electrical measurements with Ammeter, Voltmeter, Wattmeter		
and Energy meter (working principle and circuit connection).		
Total	45	100

Suggested Specification Table with Marks (Theory):

Distribution of Theory Marks						
R Level U Level A Level N Level E Level C Level						
40	20	20	20	0	0	

Where R: Remember; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create (as per Revised Bloom's Taxonomy)

References/Suggested Learning Resources:

(a) <u>Books:</u>

- 1) D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- 2) Basic Electrical Engineering Nagsarkar and Sukhija, Oxford University Press
- 3) B. L. Theraja, "Electrical Technology Part I and II", S. Chand and Co. 2012
- 4) D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- 5) J. B. Gupta "Basic Electrical Engineering", S.K. Kataria & Sons, 2023.
- 6) A Chakrabarti, S Nath and C K Chanda "Basic Electrical Engineering", TATA McGraw Hill,
- 7) S.L. Uppal "Electrical Wiring Estimating and Costing", Khanna Publisher, 1987
- 8) Irving M. Gottlieb ""Practical Electric Motor Handbook"Newnes,1997
- 9) L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 10) E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 11) V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.

GUJARAT TECHNOLOGICAL UNIVERSITY

Program Name: Bachelor of Engineering Level: UG Branch: ALL

Course / Subject Code: BE01R00051

Course / Subject Name: Basic Electrical Engineering

Open source software and website:

1. https://nptel.ac.in/

Suggested Course Practical List:

- 1) Introduction of Resistors, Capacitors and Inductors and usage of measuring instruments voltmeter, ammeter, multi-meter, oscilloscope.
- 2) To verify the Kirchoff's current and Kirchoff's voltage laws.
- 3) To verify the Thevenin's and Norton's theorems.
- 4) To verify Superposition's theorems
- 5) To obtain sinusoidal steady state response of R-L and R-C circuits impedance calculation and verification phasor relationships between voltage and current and to observe the phase differences between current and voltage phasors
- 6) To obtain steady-state and transient time-response of R-L, R-C, and R-L-C circuits to a step change in DC input voltage (transient may be observed on a Digital Storage Oscilloscope)
- 7) To verify the phasor relationships between currents and voltages for resonances in R-L-C circuits
- 8) To measure the power in three phase balanced circuits using two wattmeter method
- 9) To verify the current phasor and voltage phasor relationships in three phase star and delta connections
- 10) Demonstration of cut-section models and charts of various machines
- 11) Demonstration of domestic switch gears like MCB, ELCB, MCCB etc. of different ratings
- 12) Understanding of various safety precautions for electrical installations
- 13) Demonstration of various types of wires, fuses and cables
- 14) To Calculate energy consumption of various appliances and house hold electricity bills
- 15) To verify the power factor improvement in single phase AC circuit
- 16) Study the different types of domestic wiring
- 17) To obtain Hysteresis loop of a magnetic material on CRO/DSO

List of Laboratory/Learning Resources Required:

Ammeters, Voltmeters, Wattmeters, Resistors, Capacitors and Inductors of appropriate rating. Multimeters,

Digital storage oscilloscope, Cut section models/charts of various machines, Demo units for MCB, ELCB,

MCCB etc, Samples of wires and cables. Charts for earthing and safety precautions.

• Self-Learning Activity Plan for BE01000051 – Basic Electrical Engineering

Total Self-Learning Hours: 45 No. Activity Name Units **Brief Description** Evaluation Hours Criteria/Remarks Mapped 1 Technical Unit 1, 2, 10(5+5)Watch curated videos Report + Oral Presentation Video-Based (e.g., NPTEL/MIT OCW) 3 Learning on DC circuits, AC power,

GUJARAT TECHNOLOGICAL UNIVERSITY Program Name: Bachelor of Engineering Level: UG Branch: ALL Course / Subject Code: BE01R00051

Course / Subject Name: Basic Electrical Engineering

				Transformers. Submit a	
2	Numerical Assignment Writing	Unit 1, 2, 3	$\frac{10}{2h}$	Solve 5 numerical assignments covering Theorems, Power factor, AC analysis, and Transformer calculations.	Correctness, method, clarity
5	Problem Solving Using Software (Scilab, Tinkercad, LTSpice)	3	2h)	Simulate basic circuitsReport + Scree(RLC, transformer equivalent), transient analysis, and AC load behavior.+ Output sheet + Output sheet	
4	Case Study: Domestic Wiring & Electricity Billing	Unit 5	5 (2.5+2.5)	Study household wiring layout and energy bills. Estimate load, usage, and suggest efficiency improvements.	Report + Practical Recommendations
5	Poster / PPT Preparation	Unit 4, 5	4	Topic examples: "BLDC Motor in EV", "Earthing Methods", "Difference between MCB & MCCB"	Technical clarity + Visual appeal + Presentation
6	Group Discussion / Seminar on Electrical Safety & Earthing	Unit 5	2	Discuss safety norms, role of protective devices, and earthing types.	Technical depth, articulation
7	Online Technical Quiz / Interactive Simulation (Electrical4U / vlab.co.in)	Unit 1 to 5	2	Attempt at least 3 online quizzes with screenshot of scores and a 100-word learning reflection.	Quiz scores + Reflection Note
8	Maintenance / Troubleshooting Logbook (Lab Based)	Unit 1, 2, 4, 5	2	Record at least 5 issues encountered during lab sessions and how they were resolved.	Clarity of issue, resolution steps
9	Annotated Concept Video (Optional – Higher Bloom's	Unit 2, 3	Extra (Optional 5)	Make a 5–6 minute video explaining topics like phasor relationships or transformer working.	Clarity, technical accuracy, originality

GUJARAT TECHNOLOGICAL UNIVERSITY Program Name: Bachelor of Engineering Level: UG Branch: ALL Course / Subject Code: BE01R00051

Course / Subject Name: Basic Electrical Engineering

	level)			
10	Mini Project	Unit 1	1.Design & build a small DC lighting circuit for a room with switches & fuses, calculate load & test functionality.	 Students design and wire a small DC circuit with multiple switches and a fuse. Measure total current & voltage at different load configurations. Document calculations & measurements
			2. Create a Portable Power Supply	 1)Design and build a small DC power supply (e.g., 6V/12V) using batteries, resistors, and regulators. 2)Test output voltage under varying loads.
			3. Star-Delta Conversion Demonstration Board	Mini-Project:Star- Delta Conversion Demonstration Board
11	Mini Project	Unit 2	Construct & test a power factor correction circuit using capacitors for a given inductive load	 Build a circuit with inductive loads and capacitors to improve the power factor. Measure before and after power factor.
12	Mini Project	Unit 4	Prepare a report on motors	Identify and

GUJARAT TECHNOLOGICAL UNIVERSITY Program Name: Bachelor of Engineering Level: UG Branch: ALL Course / Subject Code: BE01R00051

Course / Subject Name: Basic Electrical Engineering

				used in a household	document the types
				appliance (e.g., washing	& ratings of motors
				machine) and demonstrate	used in 5–6
				working with a model or	household
				simulation	appliances.
					2)Suggest
					improvements for
					energy efficiency.
13	3	Mini Project	Unit 5	Design a safe, energy-	1.House Wiring
				efficient wiring layout for	Model
				a small house/shop	Design and build a
				including earthing &	functional model of
				protective devices	electrical wiring for
					a 1-room house with
					proper earthing &
					protection devices.
					2.Energy Audit &
					Bill Calculation
					Measure energy
					consumption of
					typical home
					appliances and
					calculate monthly
					electricity bill.
					Suggest ways to
					reduce the bill.
					3.Safety Demo
					Board
					Create a board
					demonstrating MCB,
					ELCB, MCCB
					operation with faulty
					& safe scenarios.

Unit-Wise Mapping of Self-Learning Activities – BE01000051

Unit	Topic	Relevant Activities
1	DC Circuits	Activities 1, 2, 3, 7, 8, 10
2	AC Circuits	Activities 1, 2, 3, 7, 8, 9, 11

GUJARAT TECHNOLOGICAL UNIVERSITY Program Name: Bachelor of Engineering Level: UG Branch: ALL Course / Subject Code: BE01R00051 Course / Subject Name: Basic Electrical Engineering

3	Magnetic Circuits & Transformers	Activities 1, 2, 3, 9,
4	Electrical Machines	Activities 1, 5, 8,12
5	Electrical Wiring, Safety & Billing	Activities 4, 5, 6, 7, 8,13

Note:

- All the suggested activity should be related to the subject.
- The number of hours is suggestive. Faculty can sub-divide the number of hours based on the activity. However, total number of hours is fixed.
- Rubrics for the evaluation can be prepared by the faculty.
- All records pertaining to the evaluation and assessment of self-learning activities must be properly maintained and preserved at the institute level. These records should be made available to the university upon request.
- Institutes are encouraged to utilize digital platforms, such as Microsoft Teams, for effective record-keeping and to ensure transparency in the evaluation and assessment of self-learning activities.

* * * * * * *