

Program Name: Engineering

Level: UG

Branch: All

Course / Subject Code : BE01R00081

Course / Subject Name : Basic Mechanical Engineering

w. e. f. Academic Year:	2024-25
Semester:	1 st Year
Category of the Course:	ESC

Prerequisite:	Nil
Rationale:	Knowledge of basic principles of Mechanical Engineering is required in various fields of engineering.

Course Outcome:

After Completion of the Course, Student will able to:

No	Course Outcomes	RBT level
1	Explain the various sources of energy and basic terminology of Mechanical engineering	Understand
2	Make calculations for commonly used working fluids i.e. ideal gases and steam	Apply
3	Make use of various heat engine cycles and explain construction and working of IC engines	Apply
4	Explain working and applications of steam boilers and various energy conversion systems	Understand
5	Explain various power transmission elements, construction and working of various clutches; couplings and brakes, and properties of various engineering materials with their applications	Understand

Teaching and Examination Scheme:

,		-	ning Schen semester)	ne	Total						
				Credits		Th	eory	Tuto	rial / Pra	ctical	Total Marks
L	Т	Р	TW/SL	TH	- TH/30	ESE	PA	PA/	TW/	ESE	IVIAI INS
						(E)	(M)	(I)	SL (I)	(V)	
45	0	30	45	120	04	70	30	20	30	50	200

Where L = Lecture, T= Tutorial, P= Practical, TW/SL = Term-Work / Self-Learning, TH = Total Hours, PA = Progressive Assessment, ESE = End-Semester Examination

w.e.f. 2024-25

http://syllabus.gtu.ac.in/

Program Name: Engineering

Level: UG

Branch: All

Course / Subject Code : BE01R00081

Course / Subject Name : Basic Mechanical Engineering

Course Content:

Unit No.	Content	No. of Hours	% of Weightage
1.	Basic Terminology and Energy: Prime movers and its types, Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific heat capacity, Process, Cycle, Internal energy, Enthalpy, Statements of Zeroth law and First law Applications of Energy sources like Fossil fuels, Nuclear fuels, Hydrogen fuel, Hydro, Solar, Wind, and Bio-fuels, Environmental issues like Global warming and Ozone depletion	8	14
2.	Properties of gases: Boyle's law, Charles's law, Gay-Lussac's law, Avogadro's law, Combined gas law, Gas constant, Relation between cp and cv, Various non-flow processes like constant volume process, constant pressure process, Isothermal process, Adiabatic process, Polytropic process Properties of Steam: Steam formation, Types of steam, Enthalpy, Specific volume, Internal energy and dryness fraction of steam, use of steam tables, steam calorimeters	12	22
3.	 Heat Engines: Heat engine cycle and Heat engine, working substances, Classification of heat engines, Description and thermal efficiency of Carnot; Rankine; Otto cycle and Diesel cycles Internal Combustion Engines: Introduction, Classification, Engine details, four-stroke/ two-stroke cycle Petrol/Diesel engines, Indicated power, Brake Power, Efficiencies 		20
4.	Steam Boilers: Introduction, Classification, Cochran, Lancashire and Babcock and Wilcox boiler, Functioning of different mountings and accessories	-	10
5.	Air compressors and pumps: Types and operation of Reciprocating and Rotary air compressors, significance of Multistage, Types and operation of Reciprocating, Rotary and Centrifugal pumps, Priming	6	10
6.	Refrigeration & Air Conditioning: Refrigerant, Vapor compression refrigeration system, Vapor absorption refrigeration system, Domestic Refrigerator, Window and split air conditioners	4	8

Program Name: Engineering

Level: UG

Branch: All

Course / Subject Code : BE01R00081

Course / Subject Name : Basic Mechanical Engineering

7.	 Couplings, Clutches and Brakes: Construction and applications of Couplings (Box; Flange; Pin type flexible; Universal and Oldham), Clutches (Disc and Centrifugal), and Brakes (Block; Shoe; Band and Disc) Transmission of Motion and Power: Shaft and axle, Different arrangement and applications of Belt drive; Chain drive; Friction drive and Gear drive 	-	10
8.	Engineering Materials: Types, properties and applications of Ferrous & Nonferrous metals, Timber, Abrasive material, silica, ceramics, glass, graphite, diamond, plastic and polymer	5	6
	Total	45	100

Note: Topic No. 4 and 7 of the above syllabus must be covered in Practical Hours.

Suggested Specification Table with Marks (Theory):

Distribution of Theory Marks					
R Level U Level A Level N Level E Level C Level					
20	40	40	-	-	-

Where R: Remember; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create (as per Revised Bloom's Taxonomy)

References/Suggested Learning Resources:

(a) Books:

- 1. Elements of Mechanical Engineering by N M Bhatt and J R Mehta, Mahajan Publishing House
- 2. Basic Mechanical Engineering by Pravin Kumar, Pearson Education
- 3. Fundamental of Mechanical Engineering by G.S. Sawhney, PHI Publication New Delhi
- 4. Elements of Mechanical Engineering by Sadhu Singh, S. Chand Publication
- 5. Introduction to Engineering Materials by B.K. Agrawal, McGraw Hill Publication, New Delhi

(b) Open source software and website:

- 1. https://nptel.ac.in
- 2. www.vlab.co.in

Suggested Course Practical List:

- 1. To understand construction and working of various types of boilers.
- 2. To understand construction and working of different boiler mountings and accessories.

http://syllabus.gtu.ac.in/

CURRENT CONCEPTION

GUJARAT TECHNOLOGICAL UNIVERSITY

Program Name: Engineering

Level: UG

Branch: All

Course / Subject Code : BE01R00081

Course / Subject Name : Basic Mechanical Engineering

- 3. To understand construction features of two/four stoke petrol/diesel engines
- 4. To determine brake thermal efficiency of an I. C. Engine.
- 5. To understand construction and working of different types of air compressors.
- 6. To demonstrate vapor compression refrigeration cycle of domestic refrigerator OR window air conditioner OR split air conditioner.
- 7. To understand construction, working and application of clutches, couplings and brakes
- 8. To understand different arrangement and application of various power transmission drives

List of Laboratory/Learning Resources Required:

Models of Cochran, Lancashire and Babcock and Wilcox boilers, models of various mountings and accessories, Models of various types of IC engines, Single cylinder two stroke /four stroke petrol/ diesel engine, models of pumps, compressors, Domestic refrigerator/window air conditioner/split air conditioner, models of various types of brakes, coupling, clutches, drives

Sl. No.	Name of the activity	No. of hours	Evaluation Criteria
1.	Industry/Research laboratory visit	Visit = 5hrs., Report preparation = 5hrs. Total = 10hrs.	Based on report submitted. Report should contain observations and calculations based on industry/ lab data.
2.	Technical Video based learning related to the subject	Duration of video = 5hrs. Report preparation = 5hrs. Total = 10hrs.	Report /presentation based on the video learning outcomes.
3.	Assignment writing. Numericals based assignment is preferable.	5 assignments of $4hrs$. each. Total = 20hrs.	Based on the correctness of submitted assignment.
4.	Problem solving/Coding using C, C++, MATLAB, Python, SCILAB,modeling and Analysis software or any other software	5 small coding-based assignment of 2hrs. each. Total = 10hrs.	Based on the coding solution submitted.
5.	Self-learning online course	Minimum duration of the course should be 10hrs.	Examination based assessment at the end of course. Based on the certificate produced.
6.	Identification and solution of Complex problem	Maximum 2 problems. Study of the problem and solution finding, Total = 10hrs.	Based on the depth of the solution submitted.
7	Videos on Industrial safety/Disaster Management aspects based on subject	Duration of video = 5hrs. Report preparation = 5hrs. Total = 10hrs.	Based on quiz/report submitted
8	Technical paper reading and summarization of research papers	5 research papers = 20 hrs.	Summarize research paper and evaluation critical parameters

• Activities suggested under self-learning:

Program Name: Engineering

Level: UG

Branch: All

Course / Subject Code : BE01R00081

Course / Subject Name : Basic Mechanical Engineering

	based on relevant subject		
9.	Poster/chart/power point preparation on technical topics	Duration = 6 hrs.	Based on poster/chart preparation and presentation skills
10	Working/non-working model on	Working = 12 hrs.	Based on inter department/external
	technical topics	Non- working $= 8$ hrs.	evaluation
11	Industrial exposure for 2-3 days to	Duration $= 15$ hrs. for	Based on evaluation of critical
	observe and provide tentative	industrial exposure	problems and solutions
	solutions on		
	society/environment/health/sustai	Problem identification and	
	nability/any other issue	tentative solution = 10 hrs. Total = 20 hrs.	
12	Group Discussion on	Duration = Min. 1 hr.per	Based on performance in group
	emerging/trending technical topics	subject. Max. 3 hrs. per	discussion, technical depth,
	based on subject	subject	knowledge etc.
13.	Real world case studies-based	Duration of data	Based on in-depth study, technical
	learning	collection/study = 5hrs.	depth, data collected, fact finding,
		Report preparation $=$ 5hrs.	etc.
		Total = 10hrs.	
14.	Application/Software	Duration $= 10$ hrs.	Depending on the complexity of the
	development		Application/Software
15.	Research paper publication	Duration = 10 hrs.	Based on submission of proof of publication
16.	Upgradation/Reverse engineering	Duration 10 hrs.	Based on the performance of the
	studies of existing equipment of		equipment
	the laboratory		
17.	Expert lecture/session	Duration 3 hrs.	Based on the proof of attendance
		For attending the	and report submitted
		lecture/session-2 hrs. and	
		for report writing 1 hr.	
18.	Annotated Video Explanation of	10h (Preparation +	Based on accuracy of explanation,
	Concept/Problem	Recording + Submission)	clarity, and presentation style.
19.	Patent Search and Innovation Gap	10h (Search + Report)	Based on number of relevant
	Identification		patents analyzed and identification
			of innovation scope.

Note:

1. All the suggested activity should be related to the subject.

2. The number of hours are suggestive. Faculty can sub-divide the number of hours based on the activity. However, total number of hours is fixed.

3. Rubrics for the evaluation can be prepared by the faculty.

4. Subject teacher can add the relevant activities other than those listed above, with the consent of head of the department and DQAC.

* * * * * * *

http://syllabus.gtu.ac.in/