

**Program Name: Bachelor of Engineering** 

Level: UG Branch: ALL

Course / Subject Code: BE01R00111

Course / Subject Name: Basic Electronics Engineering

| w. e. f. Academic Year: | 2024-25              |
|-------------------------|----------------------|
| Semester:               | I <sup>st</sup> Year |
| Category of the Course: | ESC                  |

| Prerequisite: | High School Physics and Mathematics                                                                                                                                                                                                                                                                                                                                                                    |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rationale:    | Electronics is playing a key role in all engineering applications. All engineers should have the basic knowledge of electronics. Purpose of this course is to make students familiar with basic electronic devices, circuits and their applications. Students will be able to operate electronic test and measurement equipment like digital multi-meter, CRO, DC power supply and function generator. |

#### **Course Outcome:**

After Completion of the Course, Student will able to:

| No | Course Outcomes                                        | RBT Level |
|----|--------------------------------------------------------|-----------|
| 01 | Analyze the general and special purpose diode circuits | N         |
| 02 | Design biasing circuits for BJT and FET                | С         |
| 03 | Analyze BJT circuits in small-signal domain            | N         |
| 04 | Analyze FET circuits for DC voltages and currents      | N         |
| 05 | Understand usage of Special Purpose Diodes             | U         |

<sup>\*</sup>Revised Bloom's Taxonomy (RBT)

## **Teaching and Examination Scheme:**

| Teaching / Learning Scheme<br>(in Hours per semester) |   | Hours per semester) Total Assessment Pattern and Marks |       |     |           |            |            |                      |        |                |           |
|-------------------------------------------------------|---|--------------------------------------------------------|-------|-----|-----------|------------|------------|----------------------|--------|----------------|-----------|
|                                                       |   |                                                        |       |     | Credits = | Theory     |            | Tutorial / Practical |        | Total<br>Marks |           |
| L                                                     | T | P                                                      | TW/SL | TH  | TH/30     | ESE        | PA         | PA/                  | TW/    | ESE            | 1VIAI IXS |
|                                                       |   |                                                        |       |     |           | <b>(E)</b> | <b>(M)</b> | <b>(I)</b>           | SL (I) | <b>(V)</b>     |           |
| 45                                                    | 0 | 30                                                     | 45    | 120 | 04        | 70         | 30         | 20                   | 30     | 50             | 200       |

Where L = Lecture, T = Tutorial, P = Practical, TW/SL = Term-Work / Self-Learning, TH = Total Hours, PA = Progressive Assessment, ESE = End-Semester Examination



**Program Name: Bachelor of Engineering** 

Level: UG Branch: ALL

Course / Subject Code: BE01R00111

**Course / Subject Name : Basic Electronics Engineering** 

#### **Course Content:**

| Unit<br>No. | Content                                                                                                                                                                                                                                                        | No. of<br>Hours | % of<br>Weightage |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|
| 1.          | <b>Semiconductor Diodes:</b> p-n junction diode, Characteristics and parameters, Diode approximations, DC load line analysis, Temperature effects, Diode AC models, Diode specifications, Diode testing, Zener diodes.                                         | 6               | 15                |
| 2.          | <b>Diode Applications</b> : Half-wave and Full-wave rectifiers, Power supply, RC and LC power supply filters, Zener diode voltage regulators, Series and shunt clipping circuits, Clamping circuits, DC voltage multipliers.                                   | 6               | 15                |
| 3.          | <b>Bipolar Junction Transistors</b> : BJT operation, BJT voltages and currents, BJT amplification, BJT switching, CB, CE and CC characteristics, Transistor testing.                                                                                           | 6               | 15                |
| 4.          | <b>BJT biasing</b> : DC load line and bias point, Base bias, Collector-to-base bias, Voltage- divider bias ,Comparison of basic bias circuits, Bias circuit design.                                                                                            | 6               | 15                |
| 5.          | AC analysis of BJT circuits: Coupling and bypass capacitors, AC load lines, transistor models and parameters, CE circuit analysis, CE circuit with unbypassed emitter resistor, CC circuit analysis, CB circuit analysis, Comparison of CE, CB and CC circuits | 6               | 15                |
| 6.          | <b>Field Effect Transistors</b> : Junction Field Effect Transistors, JFET characteristics, JFET data sheets and parameters, FET amplification and switching, MOSFETs                                                                                           | 5               | 10                |
| 7.          | <b>FET biasing</b> : DC load line and bias point, Gate bias, Self bias, Voltage divider bias, Comparison of basic JFET bias circuits                                                                                                                           | 4               | 5                 |
| 8.          | Special Purpose Diodes: Light Emitting Diode(LED), Photo diode, Solar cell, PIN diode, Varactor diode, Schottky diode, Tunnel diode, Seven segment display                                                                                                     | 6               | 10                |
|             | Total                                                                                                                                                                                                                                                          | 45              | 100               |

**Suggested Specification Table with Marks (Theory):** 

| Distribution of Theory Marks (in %)             |    |    |    |   |         |  |
|-------------------------------------------------|----|----|----|---|---------|--|
| R Level U Level A Level N Level E Level C Level |    |    |    |   | C Level |  |
| 15                                              | 20 | 25 | 30 | 0 | 10      |  |

Where R: Remember; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create (as per Revised Bloom's Taxonomy)



**Program Name: Bachelor of Engineering** 

Level: UG Branch: ALL

Course / Subject Code: BE01R00111

Course / Subject Name: Basic Electronics Engineering

#### **References/Suggested Learning Resources:**

#### (a) Books:

- 1. David A. Bell, "Electronic Devices and Circuits", Oxford University Press, Fifth Edition
- 2. Jacob Millman, Christos Halkias, Chetan D. Parikh, "Integrated Electronics", Tata McGraw Hill, Second Edition

#### Open source software and website:

1. <a href="http://nptel.ac.in/courses/122106025">http://nptel.ac.in/courses/122106025</a> ( Basic Electronics and lab by Prof. T.S.Natarajan )

#### **Suggested Course Practical List:**

- 1. VI characteristics of p-n junction diode, LED and photo diode
- 2. Half wave and full wave rectifier circuits
- 3. Clipper and clamper circuits
- 4. Zener diode regulator circuit
- 5. CE amplifier characteristics
- 6. CB amplifier characteristics
- 7. CC amplifier characteristics
- 8. Transistor as a switch
- 9. Voltage gain and current gain of a CE amplifier
- 10. FET characteristics
- 11. Varactor diode and tunnel diode characteristics
- 12. Seven segment LED operation

List of Laboratory/Learning Resources Required: CRO, Function Generators, DC power supply, bread board and discrete electronic components

**Suggested Project List:** Project based on design of a small circuit with input and output signal observations on CRO.

• Activities suggested under Self-learning/Team Work:

| S1. | Name of the activity               | No. of hours        | Evaluation Criteria           |
|-----|------------------------------------|---------------------|-------------------------------|
| No. |                                    |                     |                               |
| 1.  | Industry/Research laboratory visit | Visit = 5h, Report  | Based on report submitted.    |
|     |                                    | preparation = 5h    | Report should contain         |
|     |                                    | Total = 10h         | observations and calculations |
|     |                                    |                     | based on industry/ lab data.  |
| 2.  | Technical Video based learning     | Duration of video = | Report /presentation based on |



**Program Name: Bachelor of Engineering** 

Level: UG Branch: ALL

Course / Subject Code: BE01R00111

|       |                   |                                 | _      |
|-------|-------------------|---------------------------------|--------|
| Comme | / Curbines Marson | <b>Basic Electronics Engine</b> |        |
| Conre | / Sunieci Name    | Rasic Blectronics Engine        | PPrino |
|       |                   |                                 |        |

|     |                                                                                                                           | t Name: Basic Electron                                                                                     |                                                                                       |
|-----|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|     | related to the subject                                                                                                    | 5h<br>Report preparation = 5h                                                                              | the video learning outcomes.                                                          |
|     |                                                                                                                           | Total = 10h                                                                                                |                                                                                       |
| 3.  | Assignment writing. Numericals based assignment is preferable.                                                            | 5 assignments of 2h each. Total = 10h                                                                      | Based on the assignment submitted.                                                    |
| 4.  | Problem solving/Coding using C, C++, Python, SCILAB, MATLAB, MS-EXCEL or any other relevant software                      | 5 small coding based assignment of 2h each. Total = 10h                                                    | Based on the coding solution submitted.                                               |
| 5.  | Self learning on-line course                                                                                              | Minimum duration of the course should be 10h.                                                              | Examination based assessment at the end of course. Based on the certificate produced. |
| 6.  | Complex problem solving                                                                                                   | Maximum 2 problem.<br>Study of the problem<br>and solution finding,<br>Total = 10h                         | Based on the depth of the solution submitted.                                         |
| 7   | Videos on Industrial safety aspects based on subject                                                                      | Duration of video = 5h Report preparation = 5h Total = 10h                                                 | Based on quiz/report submitted                                                        |
| 8   | Discussion on research paper based on relevant subject                                                                    | 5 research paper = 20<br>h                                                                                 | Summarize research paper and evaluation critical parameters                           |
| 9.  | Poster/chart/power point preparation on technical topics                                                                  | Duration = 6 h                                                                                             | Based on poster/chart preparation and presentation skills                             |
| 10  | Working/non-working model on technical topics                                                                             | Working = 12 h<br>Non- working = 8 h                                                                       | Based on inter department/external evaluation                                         |
| 11  | Industrial exposure for 2-3 days to observe and provide tentative solutions on society/environment/health/any other issue | Duration = 15 h for industrial exposure  Problem identification and tentative solution = 10 h Total = 20 h | Based on evaluation of critical problems and solutions                                |
| 12  | Group Discussion on emerging/trending technical topics based on subject                                                   | Duration = 1 h each                                                                                        | Based on performance in group discussion, technical depth, knowledge etc.             |
| 13. | Real world case studies-based                                                                                             | Duration of data                                                                                           | Based on in-depth study,                                                              |



**Program Name: Bachelor of Engineering** 

Level: UG Branch: ALL

Course / Subject Code: BE01R00111

| Course / Subject Name: Basic Electronics Engineering |                                  |                      |                                |     |  |  |  |
|------------------------------------------------------|----------------------------------|----------------------|--------------------------------|-----|--|--|--|
|                                                      | -                                | Report preparation = | fact finding, etc.             |     |  |  |  |
|                                                      |                                  | 5h                   |                                | 1   |  |  |  |
|                                                      |                                  | Total = 10h          |                                | 1   |  |  |  |
| 14.                                                  | Application/Software development | Duration = 10 h      | Depending on the complexity of | 1   |  |  |  |
|                                                      |                                  |                      | the Application/Software       | il. |  |  |  |

#### Note:

- 1. All the suggested activity should be related to the subject.
- 2. The number of hours are suggestive. Faculty can sub-divide the number of hours based on the activity. However, total number of hours is fixed.
- 3. Rubrics for the evaluation can be prepared by the faculty.

\* \* \* \* \* \* \*